Anthropometric characteristics and features of the diurnal blood pressure profile in men with essential hypertension and obesity

January 28, 2026
34
УДК:  616.12-008.331.1+613.25]-072»34»-071.3-055.1
Resume

Objective: to evaluate the diagnostic significance of various anthropometric characteristics and establish their relationship with the parameters of the ambulatory blood pressure (BP) profile in men with essential arterial hypertension (AH) with obesity and in obese men without AH. Materials and methods. 137 men with excess body weight and obesity have been examined and stratified into three groups: group  — 50 patients with AH stage II–III with overweight, group II — 55 men with AH (stage II–III) and I–III degree obesity, group III (comparison) — 32 men with a normal BP level and obesity according to body mass index (BMI) and/or WC. The third stage of AH was determined by the presence of an atherosclerotic plaque. Patients of group III were statistically younger than men from groups I and II (p=0.015). The duration of AH was comparable in both groups. Patients were evaluated for anthropometric characteristics: waist circumference (WC), hip circumference (HC), height, weight and calculation of special anthropometric indices: waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), body mass index (BMI) and body obesity index (BOI). To study the traditional indicators of the BP profile, device of the type АВРМ-04 («Meditech», Hungary) have been used. Processing and analysis of the obtained results was carried out using the computer program «Medibase 1.42». Statistical processing of the results was carried out using Microsoft Excel and the licensed software product STATISTICA 6.1. Results. The analysis of ABPM parameters has shown that the levels of SBP and DBP during all periods of the day in groups I and II corresponded to AH of the 1st degree and did not differ statistically from each other, the indexes of «pressure load» were also comparable in groups I and II (р>0.05). It was established that the median level of Pulse BP (PBP) according to ABPM data in groups I and II exceeded the permissible norm during all analyzed periods. But II group patients the levels of PBP24, PBPd and PBPsp were statistically higher compared to the I group. In the group of men with obesity without AH, it was found that the limit values of hypertension time index (HTI) and the hypertension square index (HSI) levels were exceeded in the early morning hours, which met the criteria of transient AH at this time of day. The value of BMI had an  associative relationship with ABPM parameters only in the early morning hours: in men with obesity without AH — with the level of heart rate, the double product of SBP and DBP, and in the group of patients with AH in combination with obesity — only with the values of heart rate and PBP. At the same time, in patients with AH and obesity, the increase in the values of WC, HC, WhtR and BOI was associated with an increase in the average daily, average daytime and average nighttime PBP levels. Conclusion. The obtained data indicate that the assessment of the ambulatory BP profile in obese men without AH should be widely used to rule out masked AH, and for the anthropometric assessment of persons with AH, the determination and assessment of WC, HC, WhtR and BOI.

References

  • 1. World Obesity Federation Global Obesity Observatory. Ukraine. data.worldobesity.org/country/ukraine-224/#data_prevalence.
  • 2. Xu H., Cupples L.A., Stokes A., Liu C.T. (2018) Association of Obesity With Mortality Over 24 Years of Weight History: Findings From the Framingham Heart Study. JAMA Netw Open, 1(7): e184587. doi: 10.1001/jamanetworkopen.2018.4587.
  • 3. Мітченко О.І., Мамедов М.Н., Колесник Т.В. та ін. (2015) Поширеність артеріальної гіпертензії у міській популяції України залежно від ступеня та типу ожиріння. Міжнар. ендокринол. журн., 3: 13–19.
  • 4. Andreacchi A.T., Griffith L.E., Guindon G.E. et al. (2021) Body mass index, waist circumference, waist-to-hip ratio, and body fat in relation to health care use in the Canadian Longitudinal Study on Aging. Int. J. Obes., 45(3): 666–676. DOI: 10.1038/s41366-020-00731-z.
  • 5. Hall J.E., do Carmo J.M., da Silva A.A. et al. (2015) Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ. Res., 116(6): 991–1006. doi: 10.1161/CIRCRESAHA.116.305697.
  • 6. Mouton A.J., Li X., Hall M.E., Hall J.E. (2020) Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Immunometabolism in Macrophage Activation and Inflammation. Circ. Res., 126(6): 789–806. DOI: 10.1161/CIRCRESAHA.119.312321.
  • 7. Yamada T., Kimura-Koyanagi M., Sakaguchi K. et al. (2013) Obesity and risk for its comorbidities diabetes, hypertension, and dyslipidemia in Japanese individuals aged 65 years. Sci. Rep., 13(1): 2346. DOI: 10.1038/s41598-023-29276-7.
  • 8. Yuan Y., Sun W., Kong X. (2022) Relationship between metabolically healthy obesity and the development of hypertension: a nationwide population-based study. Diabetol. Metab. Syndr., 14(1): 150. doi: 10.1186/s13098-022-00917-7.
  • 9. Piché M.E., Tchernof A., Després J.P. (2020) Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Rep., 126(11): 1477–1500. DOI: 10.1161/CIRCRESAHA.120.316101.
  • 10. Bergman R.N., Stefanovski D., Buchanan T.A. et al. (2011) A Better Index of Body Adiposity. Obes. Silver Spring Md., 19(5): 1083–1089. DOI: 10.1038/oby.2011.38.
  • 11. Wu Y., Tong Y., Wang H. et al. (2023) Waist-to-height ratio and new-onset hypertension in middle-aged and older adult females from 2011 to 2015: A 4-year follow-up retrospective cohort study from the China Health and Retirement Longitudinal Study. Front. Public Health, 11. DOI: 10.3389/fpubh.2023.1122995.
  • 12. Grossman E. (2013) Ambulatory Blood Pressure Monitoring in the Diagnosis and Management of Hypertension. Diabetes Care, 36(Suppl. 2): S307–S311. DOI: 10.2337/dcS13-2039.
  • 13. Stergiou G.S., Palatini P., Parati G., O’Brien E. et al. (2021) 2021 european society of hypertension practice guidelines for office and out-of-office blood pressure measurement. J. Hypertens., 39(7): 1293–1302. DOI: 10.1097/HJH.0000000000002843.
  • 14. Hermida R.C., Smolensky M.H., Ayala D.E., Portaluppi F. (2015) Ambulatory Blood Pressure Monitoring (ABPM) as the reference standard for diagnosis of hypertension and assessment of vascular risk in adults. Chronobiol Int., 32(10): 1329–42. DOI: 10.3109/07420528.2015.1113804.
  • 15. Mancia G., Kreutz R., Brunström M. et al. (2023) 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens., 41(12): 1874–2071. doi: 10.1097/HJH.0000000000003480.
  • 16. Yang W.Y., Melgarejo J.D., Thijs L. et al. (2019) Association of Office and Ambulatory Blood Pressure With Mortality and Cardiovascular Outcomes. JAMA, 322(5): 409–420. DOI: 10.1001/jama.2019.9811.
  • 17. Уніфікований клінічний протокол первинної та спеціалізованої медичної допомоги «Гіпертонічна хвороба (артеріальна гіпертензія)» (2025) moz.gov.ua/storage/uploads/16883422-f721-4d41-af37-15ea3f753322/dn_1581_12092024_dod.pdf.
  • 18. Piepoli M.F., Hoes A.W., Agewall S. et al. (2016) 2016 European Guidelines on cardiovascular disease prevention in clinical practiceThe Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J., 37(29): 2315–2381. DOI: 10.1093/eurheartj/ehw106.
  • 19. Waist circumference and waist-hip ratio: report of a WHO expert consultation. Geneva, 8–11 December 2008. http://www.who.int/publications/i/item/9789241501491.
  • 20. Ashwell M., Gibson S. (2016) Waist-to-height ratio as an indicator of ‘early health risk’: simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. BMJ Open., 6(3): e010159. DOI: 10.1136/bmjopen-2015-010159.
  • 21. http://www.who.int/health-topics/hypertension/#tab=tab_1.
  • 22. Graves J.W. (2001) Prevalence of blood pressure cuff sizes in a referral practice of 430 consecutive adult hypertensives. Blood Press Monit., 6(1): 17–20. doi: 10.1097/00126097-200102000-00003.
  • 23. Hermida R.C., Smolensky M.H., Ayala D.E. et al. (2013) 2013 Ambulatory Blood Pressure Monitoring Recommendations for the Diagnosis of Adult Hypertension, Assessment of Cardiovascular and other Hypertension-associated Risk, and Attainment of Therapeutic Goals. Chronobiol. Int., 30(3): 355–410. DOI: 10.3109/07420528.2013.750490.
  • 24. Angeli F., Reboldi G., Cristina Poltronieri C., Verdecchia P. (2013) Interpretation of Ambulatory Blood Pressure Profile: A Practical Approach for Clinicians. J. Clin. Exp. Cardiol., 04 (07). DOI: 10.4172/2155-9880.1000e128.
  • 25. Weber M.A., Neutel J.L., Smith D.H., Graettinger W.F. (1994) Diagnosis of mild hypertension by ambulatory blood pressure monitoring. Circulation, 90: 2291–2298.
  • 26. Staessen J.A., Bieniaszewski L., O’Brien E.T., Fagard R. (1996) Special feature: what is a normal blood pressure in ambulatory monitoring? Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. — Eur. Ren. Assoc., 11(2): 241–245. DOI: 10.1093/oxfordjournals.ndt.a027247.
  • 27. Дзяк Г.В., Колесник Т.В., Погорецький Ю.Н. (2014) Суточное мониторирование артериального давления. Пороги, Дніпропетровськ, 200 с.
  • 28. Wang R., Wang Q. (2021) A Differential Study into Body Fat in Healthy and Hypertensive Populations Using Multiple Indexes. Diabetes Metab. Syndr. Obes. Targets Ther., 14: 279–284. DOI: 10.2147/DMSO.S267366.
  • 29. Bilo G., Grillo A., Guida V., Parati G. (2018) Morning blood pressure surge: pathophysiology, clinical relevance and therapeutic aspects. Integr. Blood Press Control., 11: 47–56. DOI: 10.2147/IBPC.S130277.
  • 30. Kazuomi K. (2010) Morning Surge in Blood Pressure and Cardiovascular Risk. Hypertension, 56(5): 765–773. DOI: 10.1161/HYPERTENSIONAHA.110.157149.
  • 31. Flynn J.T., Urbina E.M., Brady T.M. et al. (2022) Ambulatory Blood Pressure Monitoring in Children and Adolescents: 2022 Update: A Scientific Statement From the American Heart Association. Hypertension, 79(7): e114–e124. doi: 10.1161/HYP.0000000000000215.
  • 32. Tekın N., Ersoy B., Coskun S. et al. (2014) Ambulatory Blood Pressure Parameters in Office Normotensive Obese and Non-Obese Children: Relationship with Insulin Resistance and Atherosclerotic Markers. Med. Princ. Pract., 23(2): 154–159. DOI: 10.1159/000356120.
  • 33. Stabouli S., Kotsis V., Papamichael C. et al. (2005) Adolescent Obesity is Associated with High Ambulatory Blood Pressure and Increased Carotid Intimal-Medial Thickness. J. Pediatr., 147(5): 651–656. DOI: 10.1016/j.jpeds.2005.06.008.
  • 34. Robinson R.F., Batisky D.L., Hayes J.R. et al. (2004) Body mass index in primary and secondary pediatric hypertension. Pediatr. Nephrol. Berl. Ger., 19(12): 1379–1384. DOI: 10.1007/s00467-004-1588-8.
  • 35. Riva P., Martini G., Rabbia F. et al. (2001) Obesity and Autonomic Function in Adolescence. Clin. Exp. Hypertens., 23(1–2): 57–67. DOI: 10.1081/ceh-100001197.
  • 36. Hosseini M., Ataei N., Aghamohammadi A. et al. (2010) The Relation of Body Mass Index and Blood Pressure in Iranian Children and Adolescents Aged 7–18 Years Old. Iran J. Public Health, 39(4): 126–134.
  • 37. Wang Y., Howard A.G., Adair L.S. et al. (2020) Waist Circumference Change is Associated with Blood Pressure Change Independent of BMI Change. Obesity, 28(1): 146–153. DOI: 10.1002/oby.22638.