Post-stroke motor disorders: pathogenetic mechanisms and modern approaches to treatment and rehabilitation

January 14, 2026
213
УДК:  616.831-005.1:615.8
Resume

Post-stroke motor disorders are among the leading causes of long-term disability and reduced quality of life in patients who have experienced a stroke. Their structure includes paresis, impaired movement selectivity, pathological synergies, spasticity, as well as disorders of gait, balance, and postural control. In recent years, concepts of the pathogenesis of post-stroke motor deficit have undergone a significant transformation, shifting from lesion-based localization to network models of dysfunction and neuroplastic reorganization of the central nervous system. Objective: to summarize current data on pathogenetic mechanisms of post-stroke motor disorders and to analyze evidence-based therapeutic and rehabilitation approaches to motor function recovery after stroke.

Results. Recent publications indicate that severity and pattern of post-stroke motor impairments are determined by the extent of corticospinal tract damage, interhemispheric imbalance, maladaptive plasticity, and impaired sensorimotor integration. Spasticity is considered a multicomponent motor disorder combining neurogenic and musculoskeletal–biomechanical mechanisms. Contemporary rehabilitation strategies rely on early initiation, adequate intensity, and task-oriented training. The effectiveness of robot-assisted therapy, virtual reality, functional electrical stimulation, and constraint-induced movement therapy has been demonstrated as means of increasing the dose and quality of motor practice. Non-invasive neuromodulation (rTMS, tDCS) and vagus nerve stimulation combined with active rehabilitation are regarded as promising adjuvant methods. Treatment of post-stroke spasticity, including botulinum toxin, is most effective when integrated with active training programs. Telerehabilitation has shown non-inferiority to standard approaches in certain clinical settings and expands access to long-term rehabilitation care. Conclusion. Post-stroke motor disorders have a complex multilevel pathogenesis and require a personalized, multidisciplinary approach. The greatest functional benefit is achieved by combining intensive motor learning with modern technological and neuromodulatory methods.

References

  • 1. Billinger S.A., Arena R., Bernhardt J. et al. (2025) Poststroke rehabilitation access and delivery: AHA/ASA scientific statement. Stroke, 56(2): e1–e25. doi: 10.1161/STR.0000000000000493.
  • 2. European Stroke Organisation (ESO) (2025) Guideline on stroke rehabilitation. Eur. Stroke J., 10(1): 3–55. doi: 10.1177/23969873251338142.
  • 3. Jang S.H., Chang W.H., Kim Y.H. et al. (2025) Clinical practice guideline for stroke rehabilitation in Korea: 2025 update. Brain Neurorehabil., 18: e7. doi: 10.12786/bn.2025.18.e7.
  • 4. Thibaut A., Chatelle C., Ziegler E. et al. (2025) Update on post-stroke spasticity. Int. J. Mol. Sci., 26(1): 406. doi: 10.3390/ijms26010406.
  • 5. Yu Y., Huang X., Chen Y. et al. (2024) Neuroimaging of motor recovery after stroke: a systematic review. Neuroimage Clin., 42: 103636. doi: 10.1016/j.nicl.2024.103636.
  • 6. Bowman N., Krakauer J.W., Newell K.M. et al. (2021) Statistical considerations that inflate proportional recovery estimates after stroke. Stroke, 52(2): e52–e60. doi: 10.1161/STROKEAHA.120.033031.
  • 7. Moskiewicz D., Sarzyńska-Długosz I. (2025) Modern technologies supporting motor rehabilitation after stroke. J. Clin. Med., 14(22): 8035. doi: 10.3390/jcm14228035.
  • 8. Yang X., Zhou Y., Wang C. et al. (2023) Efficacy of robot-assisted training on upper limb function after stroke: systematic review and meta-analysis. Arch. Phys. Med Rehabil., 104(9): 1498–1513. doi: 10.1016/j.apmr.2023.02.004.
  • 9. Wu J., Wang Y., Chen J. et al. (2021) Virtual reality rehabilitation for stroke: meta-meta-analysis. J. Med. Internet Res., 23(10): e31051. doi: 10.2196/31051.
  • 10. Kenea C.D., Hailu A., Getnet M. et al. (2025) Immersive virtual reality in stroke rehabilitation: systematic review and meta-analysis. J. Clin. Med., 14(6): 1783. doi: 10.3390/jcm14061783.
  • 11. Okamura R., Takahashi T., Uehara K. et al. (2024) Virtual reality–based mirror therapy for upper extremity rehabilitation after stroke. Front. Neurol., 14: 1298291. doi: 10.3389/fneur.2023.1298291.
  • 12. Choi H., Kim H.J. (2024) Constraint-induced movement therapy after stroke. Brain Neurorehabil., 17(3): e19. doi: 10.12786/bn.2024.17.e19.
  • 13. Stefansson A., Johansson B.B., Persson H.C. et al. (2025) Constraint-induced movement therapy and shoulder pain after stroke. Front. Neurol., 16: 1639840. doi: 10.3389/fneur.2025.1639840.
  • 14. Boyne P., Dunning K., Carl D. et al. (2023) Optimal intensity and duration of walking rehabilitation in chronic stroke. JAMA Neurol., 80(4): 342–351. doi: 10.1001/jamaneurol.2023.0033.
  • 15. Leow X.R.G., Chew E., Kong K.H. et al. (2023) Overground robotic exoskeleton training after stroke. Arch. Phys. Med. Rehabil., 104(10): 1698–1710. doi: 10.1016/j.apmr.2023.03.006.
  • 16. Sivaramakrishnan A., Han J., Wang C. et al. (2023) Effects of acute aerobic exercise in stroke rehabilitation. Neurorehabil. Neural. Repair., 37(6): 389–399. doi: 10.1177/15459683221146996.
  • 17. Feng T., Chen L., Wang Y. et al. (2024) Resistance training of the unaffected side after stroke: randomized controlled trial. Sci. Rep., 14: 25330. doi: 10.1038/s41598-024-76810-2.
  • 18. Chen L., Wang Y., Zhang J. et al. (2025) Exercise interventions and motor recovery after stroke. Front. Neurol., 16: 1678951. doi: 10.3389/fneur.2025.1678951.
  • 19. Meng H., Zhang Y., Li G. et al. (2022) tDCS combined with virtual reality after stroke. Heliyon, 8: e12695. doi: 10.1016/j.heliyon.2022.e12695.
  • 20. Zhang J., Li Y., Wang X. et al. (2024) rTMS combined with rehabilitation after stroke. Neuromodulation, doi: 10.1016/j.neurom.2024.07.010.
  • 21. Xie Y., Zhang T., Wang J. et al. (2025) rTMS in stroke rehabilitation. Syst. Rev., 14: 94. doi: 10.1186/s13643-025-02794-3.
  • 22. Kim Y., Chang W.H., Park C.H. et al. (2024) Non-invasive brain stimulation in stroke rehabilitation. Brain Neurorehabil., 17: e5. doi: 10.12786/bn.2024.17.e5.
  • 23. Rithiely B., Smith M.C., Brown K.E. et al. (2025) Non-invasive brain stimulation for stroke: umbrella review. Front. Neurosci., 19: 1633986. doi: 10.3389/fnins.2025.1633986.
  • 24. Dawson J., Pierce D., Dixit A. et al. (2021) Vagus nerve stimulation paired with rehabilitation after stroke. Lancet, 397(10284): 1545–1553. doi: 10.1016/S0140-6736(21)00475-X.
  • 25. Wang A., Xu H., Zhang Y. et al. (2024) Brain–computer interface–based rehabilitation after ischemic stroke. Med. (N.Y.), 5(6): 559–569.e4. doi: 10.1016/j.medj.2024.02.014.
  • 26. Battaglia M., Santamato A., Ranieri M. et al. (2024) Long-term botulinum toxin treatment for post-stroke spasticity. Eur. J. Phys. Rehabil. Med., doi: 10.23736/S1973-9087.24.08429-6.
  • 27. Facciorusso S., Santamato A., Micello M.F. et al. (2025) Botulinum toxin combined with robot-assisted therapy. Toxins (Basel), 17(12): 569. doi: 10.3390/toxins17120569.
  • 28. Mijić R., Stanković I., Rašić D. et al. (2023) Functional electrical stimulation for post-stroke foot drop. Neurol. Sci., 44(6): 2051–2058. doi: 10.1007/s10072-022-06561-3.
  • 29. Khan M.A., Jang S.H., Kim Y.H. et al. (2023) FES-based upper limb rehabilitation after stroke. Front. Neurol., 14: 1272992. doi: 10.3389/fneur.2023.1272992.
  • 30. Hong X., Zhang Y., Li J. et al. (2025) Task-oriented telerehabilitation after stroke. Front. Neurol., 16: 1611565. doi: 10.3389/fneur.2025.1611565.
  • 31. Su N., Yang J., Zhang T. et al. (2021) SSRIs for motor recovery after acute stroke. Front. Neurol., 12: 749322. doi: 10.3389/fneur.2021.749322.
  • 32. Hua X., Zhang Y., Wu J. et al. (2022) Selective serotonin reuptake inhibitors for stroke recovery. Stroke, 53(4): 1364–1373. doi: 10.1161/STROKEAHA.121.038149.