Pathomorphological features of bone tissue restoration when using BIOS

October 21, 2024
151
УДК:  616.71-001.5
Resume

Purpose: to establish the histological features of bone tissue remodeling when using BIOS and to consider the features of bone tissue restoration in static, dynamic, and compression types of blocking.

Object and research methods. The study included 80 patients with diaphyseal fractures of the femur and tibia after removal of BIOS fixators with static, compression, and dynamic pin locking. Pathomorphological examination of tissues was performed in 50 cases: areas of the former fracture, fabric around the retainer and screws. The average age of the patients was 45.7±5.9 years, who were operated on to remove the BIOS. Among the patients, 58% were women. Only patients with fracture union without negative consequences, such as fracture of the fixator, delayed consolidation or nonunion, infection, etc., were included in the histological study.

The results. Around metal fasteners, the density of bone tissue increases statistically significantly after 18 months, especially in the areas where the screws and pins are located, which complicates the removal of the intramedullary rod. Destructive changes in the cortex were noted. Thus, the data of the histological study proved that the removal of BIOS in patients may be expedient in the early days after fracture union, as the formation of large foci of bone tissue in the region of the intramedullary blocked rod will significantly complicate the removal of the fixator. Clinical and radiological studies have shown that the highest percentage of fracture healing was observed in BIOS osteosynthesis with compression locking of the pin (76%).

References

  • 1. Anuar-Ramdhan I.M., Azahari I.M., Med Orth M. (2014) Minimally Invasive Plate Osteosynthesis with Conventional Compression Plate for Diaphyseal Tibia Fracture. Malays. Orthop. J., 8(3): 33–36.
  • 2. Court-Brown C.M., Caesar B. (2006) Epidemiology of adult fractures: a review. Injury, 37(8): 691–697.
  • 3. Larsen P., Elsoe R., Hansen S.H. et al. (2015) Incidence and epidemiology of tibial shaft fractures. Injury, 46(4): 746–750.
  • 4. Bäcker H.C., Heyland M., Wu C.H. et al. (2022) Breakage of intramedullary femoral nailing or femoral plating: how to prevent implant failure. Eur. J. Med. Res., 27(1): 7.
  • 5. Бондаренко А.В., Гусейнов Р.Г., Герасимова О.А. идр. (2023) Частота, факторы риска, особенности диафизарных несращений длинных костей нижних конечностей. Политравма, l (2): 36–44.
  • 6. Wong W.K.N., Tan W.P.J., Phua Y.M.C. et al. (2021) Intramedullary nail: the past, present and the future — a review exploring where the future may lead us. Orthop. Rev. (Pavia), 13(2): 25546.
  • 7. Грицай М.П., Колов Г.Б., Цокало В.М. (2016) Інфекційні ускладнення після накісткового та внутрішньокісткового остеосинтезу. Хірургія, ортопедія, травматологія, 3(25).
  • 8. Barcak E.A., Beebe M.J., Weinlein J.C. (2018) The Role of Implant Removal in Orthopedic Trauma. Orthop. Clin. North Am., 49(1): 45–53.
  • 9. Scheider P., Ganger R., Farr S. (2020) Complications of hardware removal in pediatric upper limb surgery: A retrospective single-center study of 317 patients. Medicine (Baltimore), 99(5): e19010.
  • 10. Williams B.R., McCreary D.L., Parikh H.R. et al. (2020) Improvement in Functional Outcomes After Elective Symptomatic Orthopaedic Implant Removal. J. Am. Acad. Orthop. Surg. Glob. Res. Rev., 4(9): e20.00137.
  • 11. Lieber J., Dietzel M., Scherer S. et al. (2021) Implant removal associated complications after ESIN osteosynthesis in pediatric fractures. Eur. J. Trauma Emerg. Surg.
  • 12. Szczęsny G., Kopec M., Politis D.J. et al. (2022) Review on Biomaterials for Orthopaedic Surgery and Traumatology: From Past to Present. Materials (Basel), 15(10): 3622.
  • 13. Carnicer-Lombarte A., Chen S.-T., Malliaras G.G., Barone D.G. (2021) Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front. Bioeng. Biotechnol., 9: 622524.
  • 14. Bandyopadhyay A., Mitra I., Goodman S.B. et al. (2021) Improving Biocompatibility for Next Generation of Metallic Implants. Prog. Mater. Sci., 133: 101053.
  • 15. Dapunt U., Giese T., Lasitschka F. et al. (2014) On the inflammatory response in metal-on-metal implants. J. Transl. Med., 12: 74.
  • 16. Bondarenko S., Dedukh N., Filipenko V. et al. (2018) Comparative analysis of osseointegration in various types of acetabular implant materials. HIP International., 1–7.
  • 17. RichterM., Matusiewicz H. (2021) Review of the local tissue reaction to metallic spinal implant debris: Ions and nanoparticles. World J. Advanced Res. Rev., 9(03): 167–187.
  • 18. Shrivas S., Samaur H., Yadav V. et al. (2024) Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration.ACS Biomater Sci. Eng., 10(4): 1966–1987.
  • 19. www.aofoundation.org/what-we-do/education/topic-areas/publishing-and-faculty-support-media/learning-from-failures-in-orthopedic-trauma/postoperative-management/implant-removal.
  • 20. Yoshino O., Brady J., Young K. et al. (2017) Reamed locked intramedullary nailing for studying femur fracture and its complications. Eur. Cell Mater., 34: 99–107. doi: 10.22203/eCM.v034a07.
  • 21. Brаten M., Nordby A., Terjesen T., Rossvoll l. (1992) Bone loss after locked intramedullary nailing. Computed tomography of the femur and tibia in 10 cases. Acta Orthop. Scand., 63(3): 310–314.
  • 22. Kröger H., Kettunen J., Bowditch M. et al. (2002) Bone mineral density after the removal of intramedullary nails: a cross-sectional and longitudinal study. J. Orthop. Sci., 7(3): 325–330.