Efficacy and safety of the Intelaria complex in patients with vascular mild cognitive impairment

April 9, 2024
1740
УДК:  616.89-008.46
Specialities :
Resume

Objective: to investigate the efficacy and safety of 12 weeks of Intelaria complex intake (1 capsule twice a day) in patients with mild cognitive impairment (MCI) of vascular genesis.

Object and methods. Two comparable groups of 30 patients each with mild cognitive impairment (Montreal Cognitive Assessment Scale (MоCA) less than 26 points) and neuroimaging signs of cerebral microangiopathy were formed. Both groups took medications to correct cardiovascular disease, and patients in the first group also took the Intelaria complex. Patients were invited for scheduled visits in 4, 8, 12, 18 and 24 weeks. The cognitive state of patients was determined using the MoCA scale, and the psycho-emotional condition was determined using the Hospital Anxiety and Depression Scale.

Results. A 12-week intake of the Intelaria complex in patients with vascular MCI is associated with a significant improvement in cognitive function (due to optimization of visual-constructive and executive domen) and a tendency to reduce the frequency of anxiety disorders. These positive effects on the cognitive and psycho-emotional conditions are stable and last at least for the next 12 weeks after the end of the drug.

Conclusion. The complex Intelaria (1 capsule twice a day) has a stable positive effect on the cognitive and psycho-emotional state in patients with vascular MCI.

References

  • 1. Jongsiriyanyong S., Limpawattana P. (2018) Mild cognitive impairment in clinical practice: a review article. Am. J. Alzheimer’s Dis. Other Dementias, 33(8): 500–507.
  • 2. Petersen R.C. (2011) Mild cognitive impairment. New Engl. J. Med., 364(23): 2227–2234.
  • 3. Van Der Flier W.M., Skoog I., Schneider J.A. et al. (2018) Vascular cognitive impairment. Nature Reviews Disease Primers., 4(1): 1–6.
  • 4. Lobo A., Launer L.J., Fratiglioni L. et al. (2000) Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurology, 54(5): S4.
  • 5. Dichgans M., Leys D. (2017) Vascular cognitive impairment. Circ. Res., 120(3): 573–591.
  • 6. Badji A., Youwakim J., Cooper A. et al. (2023) Vascular Cognitive Impairment — Past, Present, and Future Challenges. Ageing Res. Rev., 102042.
  • 7. Ma J., Liu F., Yang B. et al. (2021) Selective Aberrant Functional-Structural Coupling of Multiscale Brain Networks in Subcortical Vascular Mild Cognitive Impairment. Neuroscience Bulletin, 37: 287–297.
  • 8. Giorgio A., Di Donato I., De Leucio A. et al. (2019) Relevance of brain lesion location for cognition in vascular mild cognitive impairment. NeuroImage: Clinical., 22: 101789.
  • 9. Koepsell T.D., Monsell S.E. (2012) Reversion from mild cognitive impairment to normal or near-normal cognition: risk factors and prognosis. Neurology, 79(15): 1591–1598.
  • 10. Cooper C., Li R., Lyketsos C., Livingston G. (2013) Treatment for mild cognitive impairment: systematic review. Br. J. Psychiatr., 203(4): 255–264.
  • 11. Andrews V., Zammit G., O’Leary F. (2023) Dietary pattern, food, and nutritional supplement effects on cognitive outcomes in mild cognitive impairment: a systematic review of previous reviews. Nutrition Rev., 81(11): 1462–1489.
  • 12. Fekete M., Lehoczki A., Tarantini S. et al. (2023) Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients, 15(24): 5116.
  • 13. Nasreddine Z.S., Phillips N.A., Bédirian V. et al. (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc., 53(4): 695–699.
  • 14. Sachdev P., Kalaria R., O’Brien J. et al. (2014) Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis. Assoc. Dis., 28(3): 206–218.
  • 15. Folstein M.F. (1975) A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res., 12: 189–198.
  • 16. Zigmond A.S., Snaith R.P. (1983) The hospital anxiety and depression scale. Acta Psychiatr. Scand., 67(6): 361–370.
  • 17. Riccio B.V., Spósito L., Carvalho G.C. et al. (2020) Resveratrol isoforms and conjugates: A review from biosynthesis in plants to elimination from the human body. Archiv der Pharmazie, 353(12): 2000146.
  • 18. Meng X., Zhou J., Zhao C.N. et al. (2020) Health benefits and molecular mechanisms of resveratrol: a narrative review. Foods, 9(3): 340.
  • 19. Rauf A., Imran M., Suleria H.A. et al. (2017) A comprehensive review of the health perspectives of resveratrol. Food & function, 8(12): 4284–4305.
  • 20. Zhuang H., Kim Y.S., Koehler R.C., Dore S. (2003) Potential mechanism by which resveratrol, a red wine constituent, protects neurons. Ann. N.Y. Acad. Sci., 993: 276–286.
  • 21. Venigalla M., Sonego S., Gyengesi E. et al. (2003) Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochem. Int., 95: 63–74.
  • 22. Cicero A.F., Ruscica M., Banach M. (2019) Resveratrol and cognitive decline: a clinician perspective. Arch. Med. Sci., 15(4): 936–943.
  • 23. Witte A.V., Kerti L., Margulies D.S., Floel A. (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J. Neurosci., 34: 7862–7870.
  • 24. Wong R.H.X., Raederstorff D., Howe P.R.C. (2016) Acute resveratrol consumption improves neurovascular coupling capacity in adults with type 2 diabetes mellitus. Nutrients, 8: 425.
  • 25. Wong R.H.X., Nealon R.S., Scholey A., Howe P.R.C. (2016) Low dose resveratrol improves cerebrovascular function in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis., 26: 393–399.
  • 26. Cunnane S.C., Plourde M., Pifferi F. et al. (2009) Fish, docosahexaenoic acid and Alzheimer’s disease. Prog. Lipid Res., 48: 239–256.
  • 27. Martí A., Fortique F. (2019) Omega-3 fatty acids and cognitive decline: a systematic review. Nutr. Hosp., 36: 939–949.
  • 28. Akbar M., Calderon F., Wen Z., Kim H.Y. (2005) Docosahexaenoic acid: A positive modulator of akt signaling in neuronal survival. Proc. Natl. Acad. Sci. USA, 102: 10858–10863.
  • 29. Huang T., Hu X., Khan N. et al. (2013) Effect of polyunsaturated fatty acids on homocysteine metabolism through regulating the gene expressions involved in methionine metabolism. Sci. World J., 2013: 931626.
  • 30. Jump D.B. (2002) Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr. Opin. Lipidol., 13, 155–164.
  • 31. Svennerholm L. (1968) Distribution and fatty acid composition of phosphoglycerides in normal human brain. J. Lipid Res., 9(5): 570–579.
  • 32. Kim H.Y., Huang B.X., Spector A.A. (2014) Phosphatidylserine in the brain: metabolism and function. Progress in Lipid Res., 56: 1–8.
  • 33. Kang E.Y., Cui F., Kim H.K. et al. (2022) Effect of phosphatidylserine on cognitive function in the elderly: A systematic review and meta-analysis. Korean J. Food Sci. Technol., 54(1): 52–58.