Current insights into the relationship between gut microbiota and cardiovascular disease risk

January 10, 2023
937
Resume

The article publishes the data of a literature review based on the results of clinical studies, which allows to comprehensively reflect the modern ideas of scientists about the relationship between the intestinal microbiota and the risk of developing cardiovascular diseases.

References

  • 1. Novakovic M., Rout A., Kingsley T. et al. (2020) Role of gut microbiota in cardiovascular diseases. World. J. Cardiol., 12(4): 110–122. DOI: 10.4330/wjc.v12.i4.110.
  • 2. Tousoulis D., Guzik T., Padro T. et al. (2022) Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Cardiovasc. Res., 14: cvac057. DOI: 10.1093/cvr/cvac057.
  • 3. Qin J., Li R., Raes J. et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285): 59–65. DOI: 10.1038/nature08821.
  • 4. Kazemian N., Mahmoudi M., Halperin F. et al. (2020) Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 8(1): 36. DOI: 10.1186/s40168-020-00821-0.
  • 5. Gérard P., Lepercq P., Leclerc M. et al. (2007) Bacteroides sp. strain D8, the first cholesterol-reducing bacterium isolated from human feces. Appl. Environ. Microbiol., 73(18): 5742–5749. DOI: 10.1128/AEM.02806-06.
  • 6. Bartolomaeus H., Balogh A., Yakoub M. et al. (2019) Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation, 139(11): 1407–1421. DOI: 10.1161/CIRCULATIONAHA.118.036652.
  • 7. Satoh T., Akira S. (2016) Toll-Like Receptor Signaling and Its Inducible Proteins. Microbiol. Spectr, 4(6). DOI: 10.1128/microbiolspec.MCHD-0040-2016.
  • 8. Edfeldt K., Swedenborg J., Hansson G.K. et al. (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation, 105(10): 1158–1161.
  • 9. Melhem N.J., Taleb S. (2021) Tryptophan: from diet to cardiovascular diseases. Int. J. Mol. Sci., 22(18): 9904. DOI: 10.3390/ijms22189904.
  • 10. Laurans L., Venteclef N., Haddad Y. et al. (2018) Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat. Med., 24(8): 1113–1120. DOI: 10.1038/s41591-018-0060-4.
  • 11. Koren O., Spor A., Felin J. et al. (2011) Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. U.S.A., 108 Suppl. 1: 4592–4598. DOI: 10.1073/pnas.1011383107.
  • 12. Emoto T., Yamashita T., Sasaki N. et al. (2016) Analysis of Gut Microbiota in Coronary Artery Disease Patients: A Possible Link between Gut Microbiota and Coronary Artery Disease. J. Atheroscler. Thromb., 23(8): 908–921. DOI: 10.5551/jat.32672.
  • 13. Sokol H., Pigneur B., Watterlot L. et al. (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U.S.A., 105(43): 16731–16736. DOI: 10.1073/pnas.0804812105.
  • 14. Karlsson F.H., Fåk F., Nookaew I. et al. (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun., 3: 1245. DOI: 10.1038/ncomms2266.
  • 15. Emoto T., Yamashita T., Sasaki N. et al. (2016) Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J. Atheroscler. Thromb., 23: 908–921. DOI: 10.5551/jat.32672.
  • 16. Jie Z., Xia H., Zhong S.L. et al. (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun., 8(1): 845. DOI: 10.1038/s41467-017-00900-1.
  • 17. Zhu W., Gregory J.C., Org E. et al. (2016) Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 165(1): 111–124. DOI: 10.1016/j.cell.2016.02.011.
  • 18. Tang W.H., Wang Z., Levison B.S. et al. (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med., 368: 1575–1584. DOI: 10.1056/NEJMoa1109400.
  • 19. Senthong V., Li X.S., Hudec T. et al. (2016) Plasma trimethylamine N-oxide, a gut microbe-generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. J. Am. Coll. Cardiol., 67: 2620–2628. DOI: 10.1016/j.jacc.2016.03.546.
  • 20. Li X.S., Obeid S., Wang Z. et al. (2019) Trimethyllysine, a trimethylamine N-oxide precursor, provides near- and long-term prognostic value in patients presenting with acute coronary syndromes. Eur. Heart J., 40: 2700–2709. DOI: 10.1093/eurheartj/ehz259.
  • 21. Mueller D.M., Allenspach M., Othman A. et al. (2015) Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis., 243(2): 638–644. DOI: 10.1016/j.atherosclerosis.2015.10.091.
  • 22. Krznarić Ž., Vranešić Bender D., Meštrović T. (2019) The Mediterranean diet and its association with selected gut bacteria. Curr. Opin. Clin. Nutr. Metab. Care, 22: 401–406. DOI: 10.1097/MCO.0000000000000587.
  • 23. Thushara R.M., Gangadaran S., Solati Z. et al. (2016) Cardiovascular benefits of probiotics: a review of experimental and clinical studies. Food Funct., 7(2): 632–642. DOI: 10.1039/c5fo01190f.
  • 24. Karlsson C., Ahrné S., Molin G. et al. (2010) Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: a randomized controlled trial. Atherosclerosis, 208: 228–233. DOI: 10.1016/j.atherosclerosis.2009.06.019.
  • 25. Naruszewicz M., Johansson M.L., Zapolska-Downar D. et al. (2002) Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am. J. Clin. Nutr., 76: 1249–1255. DOI: 10.1093/ajcn/76.6.1249.
  • 26. Andrade S., Borges N. (2009) Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. J. Dairy Res., 76(4): 469–474. DOI: 10.1017/S0022029909990173.
  • 27. Rondanelli M., Faliva M.A., Perna S. et al. (2017) Using probiotics in clinical practice: where are we now? A review of existing meta-analyses. Gut Microbes., 8(6): 521–543. DOI: 10.1080/19490976.2017.1345414.
  • 28. Levy M., Kolodziejczyk A.A., Thaiss C.A. et al. (2017) Dysbiosis and the immune system. Nat. Rev. Immunol., 17: 219–232. DOI: 10.1038/nri.2017.7.
  • 29. Tajabadi-Ebrahimi M., Sharifi N., Farrokhian A. et al. (2017) A randomized controlled clinical trial investigating the effect of synbiotic administration on markers of insulin metabolism and lipid profiles in overweight type 2 diabetic patients with coronary heart disease. Exp. Clin. Endocrinol., 125: 21–27. DOI: 10.1055/s-0042-105441.
  • 30. Ooi L.G., Ahmad R., Yuen K.H. et al. (2010) Lactobacillus gasseri [corrected] CHO-220 and inulin reduced plasma total cholesterol and low-density lipoprotein cholesterol via alteration of lipid transporters. J. Dairy Sci., 93(11): 5048–5058. DOI: 10.3168/jds.2010-3311.
  • 31. Swanson K.S., Gibson G.R., Hutkins R. et al. (2020) The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of Synbiotics. Nat. Rev. Gastroenterol. Hepatol., 17: 687–701. DOI: 10.1038/s41575-020-0344-2.
  • 32. Choi H.H., Cho Y.S. (2016) Fecal Microbiota Transplantation: Current Applications, Effectiveness, and Future Perspectives. Clin Endosc., 49(3): 257–265. DOI: 10.5946/ce.2015.117.
  • 33. Vrieze A., Van Nood E., Holleman F. et al. (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143(4): 913–916.e7. DOI: 10.1053/j.gastro.2012.06.031