Mitochondrial dysfunction in the general continuum of non-communicable diseases from the position of systemic medicine. Part I. Literature review and results of theoretical research

February 10, 2022
967
Resume

The conceptual issues of the involvement of the mechanisms of mitochondrial dysfunction in the general continuum of non-communicable diseases are considered in the article.

Aim: to improve the knowledge of the etiopathogenesis of non-communicable diseases by conceptualizing the issues of systemic involvement of the mechanisms of mitochondrial dysfunction in their general continuum.

The object of the study: to identify, summarize the issues of systemic involvement of the mechanisms of mitochondrial dysfunction in non-communicable diseases, followed by a conceptual restoration in the cardiovascular and general continuum of non-communicable diseases.

Research methods: general scientific, theoretical, logical methods and normative rules.

Results. Part I presents generalized issues of the role of mitochondrial dysfunction in the pathogenesis of non-communicable diseases, identification of mechanisms and ways of primary prevention. Mitochondrial dysfunction is conceptualized as a universal pathogenetic mechanism.

Conclusions. Mitochondrial dysfunction determines the etiopathogenetic basis for the transition of the human body from a state of functional health to pathology with the gradual onset and progression of non-communicable diseases. Emphasis in the introduction of a healthy lifestyle among all segments of the population in order to prevent non-communicable diseases should be placed on: 1) preventing excess intake of food substrates (overeating); 2) avoidance of frequent, constant eating; 3) adequate nutriceptive provision of the diet; 4) prevention of hypodynamia; 5) the need to use ecological, natural food products with sufficient fiber content, normal shelf life; 6) absence of bad habits; 7) expediency of life in an ecologically clean environment.

References

  • 1. Dzau V.J., Braunwald E. (1991) Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am. Heart. J., 121: 1244–1263. DOI: 10.1016/0002-8703(91)90694-d.
  • 2. Мінцер О.П., Потяженко М.М., Невойт Г.В. (2021) Магнітоелектрохімічна теорія обміну речовин. Том1. Концептуалізація. Монографія за заг. ред. О.П. Мінцера, М.М. Потяженка. Інтерсервіс. Київ — Полтава, 352 с.
  • 3. Luis A.V., Marimán A., Ramos B. et al. (2022) Standpoints in mitochondrial dysfunction: Underlying mechanisms in search of therapeutic strategies. Mitochondrion., 63: 9–22. DOI: 10.1016/j.mito.2021.12.006.
  • 4. Шендеров Б.А. (2018) Роль митохондрий в профилактической и оздоровительной медицине. Вестник восстановительной медицины, 1: 21–31.
  • 5. Mach N., Fuster-Botella D. (2017) Endurance exercise and gut microbiota: A review. J Sport Health Science, 6: 179–97. DOI: 10.1016/j. shs.2016.05.001.
  • 6. Popkov V.A., Plotnikov E.Y., Lyamzaev K.G. et al. (2015) Mitodiversity. Biochemistry (Moscow), 80(5): 532–541.
  • 7. Popkov V.A., Plotnikov E.Yu., Zorova L.D. et al. (2017) Quantification od Mitochondrial Morphology in situ. Cell and Tissue Biology, 11(1): 51–58.
  • 8. Nibali L., Henderson B. (Eds.) (2016) The Human Microbiota and Chronic Disease: Dysbiosis as a Cause of Human Pathology, 1th Edition. By John Wiley & Sons, 544 p.
  • 9. Rong Y., Urban L., Monica N., Jian Z. (2020) Regulation of Mammalian Mitochondrial Dynamics: Opportunities and Challenges. Front. Endocrinol., 11. DOI:10.3389/fendo.2020.00374.
  • 10. Saint-Georges-Chaumet Y., Edeas M. (2016) Microbiota-mitochondria inter-talk: consequence for microbiota-host interaction. Pathogens Dis., 74: ftv096. DOI: 10.1093/femspd/ftv096.
  • 11. Mottawea W., Chiang C.-K., Méhlbauer M. et al. (2016) Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat. Commun., 7: 13419. DOI: 10.1038/ncomms13419.
  • 12. Frye G.J., Rose S., Slattery J., MacFabe D.F. (2015) Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome. Microb. Ecol. Health Dis., 26: 27458. DOI: dx.doi.org/10.3402/mehd.v.26.27458.
  • 13. Zorov D.B., Plotnikov E.Y., Silachev D.N. et al. (2014) Putting an Equal Sign between Mitochondria and Bacteria. Biochemistry, Moscow, 79(10): 1017–1031.
  • 14. Torralba D., Baixauli F., Sénchez-Madrid F. (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Frontiers in Cell and Development Biology, 4: 107. DOI:10.3389/fcell.2016.00107.
  • 15. Shenderov B.A., Midtvedt T. (2014) Epigenomic programing: a future way to health? Microb. Ecol. Health Dis., 25: 24145. DOI: 10.3402/mehd.v25.24145.
  • 16. Kozjak-Pavlovic V., Ross K., Rudel T. (2008) Import of bacterial pathogenicity factors into mitochondria. Curr. Opin. Microbiol., 11(1): 9–14. DOI: 10.1016/j.mib.2007.12.004.
  • 17. Lobet E., Letesson J.J., Arnould T. (2015) Mitochondria: a target for bacteria. Biochem. Pharmacol., 94(3): 173–85. DOI: 10.1016/j.bcp.2015.02.007.
  • 18. Selma M.V., Beltran D., Luna M.C. et al. (2017) Isolation of human Intestinal Bacteria Capable of producing the bioactive metabolite isourolithin A from Ellagic Acid. Front Microbiol., 8. DOI: 10.3389/fmicb.2017.01521.
  • 19. Franco-Obregon A., Gilbert J.A. (2017) The Microbiome-Mitochondrion connection: Common Ancestries, Common Mechanisms, Common Goals. mSystems, 2(3): e00018–e00017. doi org/10.1128/mSystems.00018-17.
  • 20. Wang Y., Wu Y., Wang Y. et al. (2017) Antioxidant Properties of Probiotic Bacteria. Nutrients, 9: 521. DOI:10.3390/nu9050521.
  • 21. Brown D.A., Perry J.B., Allen M.E. et al. (2017) Mitochondrial function as a therapeutic target in heart failure: Expert consensus document. Nat. Rev. Cardiol., 14(4): 238–250. DOI: 10.1038/nrcardio.2016.203.
  • 22. Castegna A., Iacobazzi V., Infantino V. (2015) The mitochondrial side of epigenetics. Physiol. Genomics, 47: 299–307. DOI: 10.1152/physiolgenomics.00096.2014.
  • 23. Chandel N.S. (2015) Evolution of mitochondria as signaling organelles. Cell Metab., 22: 204–206. DOI: 10.1152/physiolgenomics.00096.2014.
  • 24. Khan N.A., Govindaraj P., Meena A.K., Thangaraj K. (2015) Mitochondrial disorders: challenges in diagnosis & treatment. Indian J. Med. Res., 141(1): 13–26. DOI: 10.4103/0971-5916.154489.
  • 25. Neis E.P.J.G., Dejong C.H.C., Rensen S.S. (2015) The Role of Microbial Amino Acid Metabolism in Host Metabolism. Nutrients, 7(4): 2930–2946. DOI:10.3390/nu7042930.
  • 26. Kesner E.E., Saada-Reich A., Lorberboum-Galski H. (2016) Characteristics of mitochondrial transformation into human cells. Sci. Rep., 6. DOI:10.1038/srep26057.
  • 27. Pernas L., Scorrano L. (2016) Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Ann Rev Physiol., 78(1): 505–531. DOI: 10.1146/annurev-physiol-021115-105011.
  • 28. Picard M., Wallace D.C., Burelle Y. (2016) The rise of mitochondria in medicine. Mitochondrion, 30: 105–116. DOI: 10.1016/j.mito.2016.07.003.
  • 29. Johnsona J., Mercado-Ayona E., Mercado-Ayonb Y. et al. (2021) Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch. Biochem. Biophysics., 702: 108698. doi.org/10.1016/j.abb.2020.108698.
  • 30. Nunes C., Laranjinha J. (2021) Nitric oxide and dopamine metabolism converge via mitochondrial dysfunction in the mechanisms of neurodegeneration in Parkinson’s disease. Archives of Biochemistry and Biophysics, 15(704): 108877. DOI: https:10.1016/j.abb.2021.108877.
  • 31. Yanga Y., Liua Y., Zhua J. et al. (2022) Neuroinflammation-mediated mitochondrial dysregulation involved in postoperative cognitive dysfunction. Free Radical. Biology and Medicine, 178: 134–146. DOI: 10.1016/j.freeradbiomed.2021.12.004.
  • 32. Espin J.C., Gonzalez-Sarrias A., Tomas-Barberan F.A. (2017) The gut microbiota: A key factor in the therapeutic effects of (poly) phenols. Biochem. Pharmacol., 139: 82–93. DOI: 10.1016/j.bcp.2017.04.033.
  • 33. Jin H., Kanthasamy A., Ghosh A. et al. (2014) Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim. Biophys. Acta, 1842: 1282–1294. DOI: 10.1016/j.bbadis.2013.09.007.
  • 34. Ramachandran A., Moellering D.R., Ceaser E. et al. (2002) Inhibition of mitochondrial protein synthesis results in increased endothelial cell susceptibility to nitric oxide-induced apoptosis. Proc. Natl. Acad. Sci. USA, 99: 6643–6648. DOI: 10.1073/pnas.102019899.
  • 35. Latorre-Pellicer A., Moreno-Loshuertos R., Lechuga-Vieco A.V. et al. (2016) Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature. 535(7613): 561–565. DOI: 10.1038/nature18618.
  • 36. Angelova P.R., Abramov A.Y. (2018) Role of mitochondrial ros in the brain: from physiology to neurodegeneration. FEBS Letters, 592: 692–702. DOI: http://www.ncbi.nlm.nih.gov/pubmed/29292494.
  • 37. Elfawy H.A., Das B. (2019) Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sci., 218: 165–184. DOI: http://www.ncbi.nlm.nih.gov/pubmed/30578866.
  • 38. Walter H., Moos D.V. Faller I.P. et al. (2021) Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochemical Pharmacology, 193: 114809. DOI: 10.1016/j.bcp.2021.114809.
  • 39. Marchi S., Patergnani S., Missiroli S. et al. (2018) Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium., 72: 62–72. DOI: ncbi.nlm.nih.gov/pubmed/28515000.
  • 40. Merlini E., Coleman M.P., Loreto A. (2022) Mitochondrial dysfunction as a trigger of programmed axon death. Elsevier, 45: 53–63. DOI: 10.1016/j.tins.2021.10.014.
  • 41. Maguire D., Neytchev O., Talwar D. et al. (2018) Telomere Homeostasis: Interplay with Magnesium. Int. J. Mol. Sci., 19(1): 157. DOI: 10.3390/ijms19010157.
  • 42. Wallace D.C., Chalkia D. (2013) Mitochondrial DNA genetics and the hetertoplasmy conundrum in evolution and disease. Cold Spring Harb Perspect. Biol., 5: a021220. DOI: 10.1101/cshperspect.a021220.
  • 43. Shenderov B.A. (2016) The microbiota as an epigenetic control mechanism. In book: The Human Microbiota and Chronic Disease: 179–197. DOI:10.1002/9781118982907.ch11.
  • 44. Larson-Casey J.L., He C., Carter A.B. (2020) Mitochondrial quality control in pulmonary fibrosis. Redox Biology, 33, article 101426. DOI: 10.1016/j.redox.2020.101426.
  • 45. Picard M., McManus M.J., Gray J.D. et al. (2015) Mitochondria functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. PNAS, 16: 6614–6623. DOI: 10.1073/pnas.15157333112.
  • 46. Senft D., Ronai Z.A. (2016) Regulators of mitochondrial dynamics in cancer. Curr. Opin. Cell Biol., 39: 43–52. DOI: 10.1016/j.ceb.2016.02.001.
  • 47. Walker M.A., Volpi S., Sims K.B. et al. (2014) Powering the immune system: mitochondria in immune function and deficiency. J. Immunol. Res., 2014:164309. DOI: 10.1155/2014/164309.
  • 48. Rongvaux A. (2018) Innate immunity and tolerance toward mitochondria. Mitochondrion, 41: 14–20. DOI: 10.1016/j.mito.2017.10.007.
  • 49. Birsoy K., Wang T., Chen W.W. et al. (2015) An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell, 162: 540–551. DOI: 10.1016/j.cell.2015.07.016.
  • 50. Zong W.-X., Rabinowitz J.D., White E. (2016) Mitochondria and cancer. Molecular Cell, 61. DOI: 10.1016/j.molcel.2016.02.011.
  • 51. Song S.B., Jang S.-Y., Kang H.T. et al. (2017) Modulation of mitochondrial membrane potential an ROS generation by nicotinamide in a Manner Independent of SIRT1 and Mitophagy. Mol. Cells, 40(7): 503–514. DOI: 10.14348/molcells.2017.0081.
  • 52. Sinha P., Islam M.N., Bhattacharya S., Bhattacharya J. (2016) Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. Cur. Opin. Gen. Devel., 38: 97–101. DOI: 10.1016/j.gde.2016.05.002.
  • 53. Yue L., Yao H. (2016) Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br. J. Pharmacol., 15(173): 2305–2318. DOI: 10.1111/bph.13518.
  • 54. Akbari M., Kirkwood T.B.L., Bohr V.A. (2019) Mitochondria in the signaling pathways that control longevity and health span. Ageing Res. Rev., 54: 100940. DOI: 10.1016/j.arr.2019.100940.
  • 55. Vringer E., Tait S.W.G. (2019) Mitochondria and inflammation: cell death heats up. Frontiers in Cell and Development. Biology, 7: 100. DOI: http://www.ncbi.nlm.nih.gov/pubmed/31316979.
  • 56. Zorov D.B., Isaev N.K., Plotnikov E.Y. et al. (2013) Perspectives of Mitochondrial Medicine. Biochemistry, Moscow, 78(9): 979–990.
  • 57. Zorov D.B., Juhaszova M., Sollott S.J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 94(3): 909–950.
  • 58. Karaa A., Goldstein A. (2015) The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr. Diab.,16(1): 1–9. DOI: 10.1111/pedi.12223.
  • 59. Позднякова А.А., Володина М.А., Рштуни С.Д. и др. (2015) Митохондриальная дисфункция как одна из возможных причин нарушения фолликуло- и стероидогенеза при преждевременной недостаточности яичников. Акуш. Гинекол. Репрод., 4: 55–65.
  • 60. Иванова И.И., Гнусаев С.Ф., Сухоруков В.С. и др. (2019) Проявления митохондриальной дисфункции у детей с дисплазией соединительной ткани и хроническим гастродуоденитом. Рос. вестн. перинатол. педиатр., 64(5): 84–90. DOI: 10.21508/1027-4065-2019-64-5-84-90.
  • 61. Zhou W., Qu J., Xie S. et al. (2021) Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. Oxidative Medicine and Cellular Longevity, 2021: Article ID 5188306. DOI: 10.1155/2021/5188306.
  • 62. Knight-Lozano C.A., Young C.G., Burow D.L. et al. (2002) Cigarette smoke exposure and hypercholeste rolemia increase mitochondrial damage in cardiovas cular tissues. Circulation, 105: 849–854. DOI: 10.1161/hc0702.103977.
  • 63. Cудаков Н.П., Никифоров С.Б., Константинов Ю.М. и др. (2007) Митохондриальная дисфункция в механизмах атерогенеза. Бюл. ВСНЦ СО РАМН, 2(54): 119–123.
  • 64. Hayakawa K., Esposito E., Wang X. et al. (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 535(7613): 551–555. DOI: 10.1038/nature18928.
  • 65. Егорова Л.А., Ежов М.В., Шиганова Г.М., Постнов А.Ю. (2013) Возможная роль мутаций митохондриального генома при ишемической болезни сердца. Клиницист, 2: 6–13.
  • 66. Wu C., Zhang Z., Zhang W., Liu X. (2022) Mitochondrial dysfunction and mitochondrial therapies in heart failure . Pharmacol. Res., 175: 106038. DOI: 10.3389/FCVM.2021.822969.
  • 67. Bisaccia G., Ricci F., Gallina S. et al. (2021) Mitochondrial dysfunction and heart disease: Critical appraisal of an overlooked association. Int. J. Mol. Sci., 22(2): 614. DOI: 10.3390/ijms22020614.
  • 68. Bordi M., Nazio F., Campello S. (2017) The Close Interconnection between Mitochondrial Dynamics and Mitophagy in cancer. Front Oncol., 7: 1–9. DOI:10.3389/fonc.2017.00081.
  • 69. Birsoy K., Possemato R., Lorbeer F.K. et al. (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature, 508: 108–112. DOI: 10.1038/nature13110.
  • 70. Stewart J.B., Alaei-Mahabadi B., Sabarinathan R. et al. (2015) Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers. PLoS Genet., 11: e1005333. DOI: 10.1371/journal.pgen.1005333.
  • 71. Оковитый С.В. (2015) Митохондриальная дисфункция при метаболическом синдроме. Эффективная фармакотерапия, 16: 46–48.
  • 72. Wu H., Esteve E., Tremaroli V. et al. (2017) Metformin alters the gut microbiome of individuals with treatment-naéve type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med., 23(7): 850–58. DOI: 10.1038/nm.4345.
  • 73. Hughes S.D., Kanabus M., Anderson G. et al. (2014) The ketogenic diet component decaboic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J. Neurochem., 129: 426–433. DOI: 10.1111/jnc.12646.
  • 74. Николаева Е.А. (2017) Митохондриальные болезни у детей: клинические проявления, возможности диагностики и лечения. Учебное пособие. Москва, 88 с.
  • 75. Гречаніна Ю.Б., Гречаніна О.Я., Школьнікова Д.В. (2020) Мітохондріальні хвороби: генетична епідеміологія, діагностика та лікування (health-ua.com/article/61887-mtohondraln-hvorobi-genetichna-epdemologya-dagnostika-talkuvannya).
  • 76. Брин И.Л., Неудахин Е.В., Дунайкин М.Л. (2015) Карнитин в педиатрии: исследования и клиническая практика. Медпрактика, Москва, 112 с.
  • 77. Ивянский С.А., Балыкова Л.А., Щекина Н.В. и др. (2016) Нарушения соединительной ткани у детей и подростков, занимающихся спортом. Consilium Medicum. Педиатрия, 4: 94–101.
  • 78. Frohlich J., Chaldakov G.N., Vinciguerra M. (2021) Cardio- and neurometabolic adipobiology: Consequences and implications for therapy. Int. J. Mol. Sci., 8(22): 4137. DOI: 10.3390/ijms22084137.
  • 79. Barteková M., Adameová A., Görbe A. et al. (2021) Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic. Biol. Med.,169: 446–477. DOI: 10.1016/j.freeradbiomed.2021.03.045.
  • 80. Tilokani L., Nagashima S., Paupe V., Prudent J. (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem., 62(3): 341–360. DOI: 10.1042/EBC20170104.
  • 81. Khan M.S., Butler J. (2019) Targeting mitochondrial function in heart failure: Makes sense but will it work? JACC Basic Transl. Sci., 4(2): 158–160. DOI: 10.1016/j.jacbts.2019.03.003.
  • 82. Taddeo E.P., Laker R.C., Breen D.S. et al. (2014) Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Mol. Metabol., 3: 124–134.
  • 83. Korzeniewski B. (2015) Effects of OXPHOS complex deficiencies and ESA dysfunction in working intact skeletal muscle: implications for mitochondrial myopathies. Biochimica et Biophysica Acta (BBA). Bioenergetics, 1847: 1310–1319. DOI: 10.1016/j.bbabio.2015.07.007.
  • 84. Clark A., Mach N. (2015) Mitochondria, Microbiota, and Endurance Exercise compounds. Gastroenterol. Res. Pract., e398585. DOI: 10.1155/2015/ 398585.
  • 85. Chen Y.-M., Wei L., Chiu Y.-Sh. et al. (2016) Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients, 8: 205. DOI:10.3390/nu8040205.
  • 86. Huertas J.R., Casuso R.A., Agustín P.H., Cogliati S. (2019) Stay Fit, Stay Young: Mitochondria in Movement: The Role of Exercise in the New Mitochondrial Paradigm. Oxid Med Cell Longev., eCollection 2019 Jun: 7058350. DOI: 10.1155/2019/7058350.
  • 87. Gremmingera V.L., Harrelsona E.N., Crawforda T.K. et al. (2021) Skeletal muscle specific mitochondrial dysfunction and altered energy metabolism in a murine model (oim/oim) of severe osteogenesis imperfecta. Mol. Genet. Metabol., 4(132): 244–253. DOI: 10.1016/j.ymgme.2021.02.004.
  • 88. Muir R., Diot A., Poulton J. (2016) Mitochondrial content is central to nuclear gene expression: Profound implications for human health. BioEssays, 38(2): 150–156. DOI: 10.1002/bies.201500105.
  • 89. Борисова О. Митохондриальная медицина. Часть 2. Научный обзор. openlongevity.org/mitochondria_medicine_2.
  • 90. Nishimura K., Shiina R., Kashiwagi K., Igarashi K. (2006) Decrease in Polyamines with Aging and Their Ingestion from Food and Drink. J. Biochem., 139: 81–90. DOI:10.1093/jb/mvj003.
  • 91. Щербакова Е. (2020) Питание биохакера. Как питаться, чтобы быть эффективным и замедлить старение, Litres, 286 с.
  • 92. Boelsterli U.A., Redinbo M.R., Saitta K.S. (2013) Multiple NSAID -induced hits injure the small intestine: underlying mechanisms and novel strategies. Toxicol. Sci., 131(2): 654–667. DOI: 10.1093/toxsci/kfs310.
  • 93. Bauer A.Z., Kriebel D. (2013) Prenatal and perinatal analgesic exposure and autism: an ecological link. Environ Health, 12: 41. DOI: 10.1186/1476-069X-12-41.
  • 94. Kalghatgi S., Spina C.S., Costello J.C. et al. (2013) Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci. Transl. Med., 5: 192ra85. DOI: 10.1126/scitranslmed.3006055.
  • 95. Moullan N., Mouchiroud L., Wang X. et al. (2015) Tetracyclines Disturb Mitochondrial Funcrion across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Reports, 10: 1681–1691. DOI: 10.1016/j.celrep.2015.02.034
  • 96. Bhonchal S., Nain C.K., Prasad K.K. et al. (2008) Functional and morphological alterations in small intestine mucosa of chronic alcoholics. J. Gastroenterol. Hepatol., 23(2): 278–285. DOI: 10.1111/j.1440-1746.2008.05415.x.
  • 97. Самойлов В.О. (2013) Медицинская биофизика. СпецЛит, Санкт-Петербург, 591 с.