- 1. Veselovskaya Z.F., Panchenko Iu.O., Zhupan B.B. et al. (2025) Systemic risk factors for progression of diabetic retinopathy in type 2 diabetes mellitus. Arch. Ukr. Ophthalmol., 13(1): 1–5. DOI: 10.22141/2309-8147.13.1.2025.398.
- 2. GBD 2021 Diabetes Collaborators (2023) Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet (London, England), 402(10397): 203–234. DOI: 10.1016/S0140-6736(23)01301-6.
- 3. Teo Z.L., Tham Y.C., Yu M. et al. (2021) Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology, 128(11): 1580–1591. DOI: 10.1016/j.ophtha.2021.04.027.
- 4. Vision Loss Expert Group of the Global Burden of Disease Study; GBD 2019 Blindness and Vision Impairment Collaborators (2024) Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 2000 to 2020. Eye (London, England), 38(11): 2047–2057. DOI: 10.1038/s41433-024-03101-5.
- 5. Fenner B.J., Wong R.L.M., Lam W.C. et al. (2018) Advances in Retinal Imaging and Applications in Diabetic Retinopathy Screening: A Review. Ophthalmology and therapy, 7(2): 333–346. DOI: 10.1007/s40123-018-0153-7.
- 6. Ting D.S.W., Cheung C.Y., Lim G. et al. (2017) Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA, 318(22): 2211–2223. DOI: 10.1001/jama.2017.18152.
- 7. Pinto I., Olazarán Á., Jurío D. et al. (2025) Improving diabetic retinopathy screening using artificial intelligence: design, evaluation and before-and-after study of a custom development. Front. Digital Health, 7: 1547045. DOI: 10.3389/fdgth.2025.1547045.
- 8. Lim J.I., Kim S.J., Bailey S.T. et al. American Academy of Ophthalmology Preferred Practice Pattern Retina/Vitreous Committee (2025) Diabetic Retinopathy Preferred Practice Pattern®. Ophthalmology, 132(4): P75–P162. DOI: 10.1016/j.ophtha.2024.12.020.
- 9. Wilkinson C.P., Ferris F.L. 3rd, Klein R.E. et al. (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 110(9): 1677–1682. DOI: 10.1016/S0161-6420(03)00475-5.
- 10. Abràmoff M.D., Lavin P.T., Birch M. et al. (2018) Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Med., 1: 39. DOI: 10.1038/s41746-018-0040-6.
- 11. Sun J.K., Radwan S.H., Soliman A.Z. et al. (2015) Neural Retinal Disorganization as a Robust Marker of Visual Acuity in Current and Resolved Diabetic Macular Edema. Diabetes, 64(7): 2560–2570. DOI: 10.2337/db14-0782.
- 12. Waheed N.K., Rosen R.B., Jia Y. et al. (2023) Optical coherence tomography angiography in diabetic retinopathy. Progress in retinal and eye research, 97: 101206. DOI: 10.1016/j.preteyeres.2023.101206.
- 13. Spaide R.F., Fujimoto J.G., Waheed N.K. et al. (2018) Optical coherence tomography angiography. Progress in retinal and eye research, 64: 1–55. DOI: 10.1016/j.preteyeres.2017.11.003.
- 14. Li Z., Keel S., Liu C. et al. (2018) An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Diabetes care, 41(12): 2509–2516. DOI: 10.2337/dc18-0147.
- 15. Dharrao D., Dharrao M., Patil S. et al. (2025) AI-driven detection and classification of diabetic retinopathy stages using EfficientNetB0. Discov Appl Sci., 7: 1400. DOI: 10.1007/s42452-025-07998-9.
- 16. Schmidt-Erfurth U., Sadeghipour A., Gerendas B.S. et al. (2018) Artificial intelligence in retina. Progress in retinal and eye research, 67: 1–29. DOI: 10.1016/j.preteyeres.2018.07.004.
- 17. Crane A.B., Choudhry H.S., Dastjerdi M.H. (2024) Effect of simulated cataract on the accuracy of artificial intelligence in detecting diabetic retinopathy in color fundus photos. Indian J. Ophthalmol., 72(1): S42–S45. DOI: 10.4103/IJO.IJO_1163_23.
- 18. Alqahtani A.S., Alshareef W.M., Aljadani H.T. et al. (2025) The efficacy of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis. Int. J. Retina Vitreous, 11(1): 48. DOI: 10.1186/s40942-025-00670-9.
- 19. Wang Y.L., Yang J.Y., Yang J.Y. et al. (2021) Progress of artificial intelligence in diabetic retinopathy screening. Diabetes/metabolism research and reviews, 37(5): e3414. DOI: 10.1002/dmrr.3414.
- 20. Arcadu F., Benmansour F., Maunz A. et al. (2019) Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digital Med., 2: 92. DOI: 10.1038/s41746-019-0172-3.
- 21. Nakayama L.F., Zago Ribeiro L., Novaes F. et al. (2023) Artificial intelligence for telemedicine diabetic retinopathy screening: a review. Ann. Med., 55(2): 2258149. DOI: 10.1080/07853890.2023.2258149.
|