Early diagnosis of diabetic retinopathy: current opportunities and challenges

February 9, 2026
48
УДК:  617.735-007.281:616.379-008.64]-07
Resume

Diabetic retinopathy is a microvascular complication of diabetes mellitus and remains one of the leading causes of irreversible vision loss among the working-age population. Aim: to summarize current approaches to the early diagnosis of diabetic retinopathy. Object and methods. An analytical review of scientific sources focusing on the clinical and instrumental diagnosis of diabetic retinopathy. Results. Fundus photo, optical coherence tomography and fluorescein angiography enable the detection of microvascular abnormalities and assessment of disease stage. However, shortages of ophthalmologists, limited availability of equipment, and the high cost of procedures hinder the widespread implementation of these methods and leave a proportion of patients without regular screening. Artificial intelligence algorithms demonstrate high sensitivity and specificity in detecting early manifestations and stages of the disease, reduce interobserver variability, and facilitate optimization of patient triage. Conclusion. Integration of artificial intelligence systems into diabetic retinopathy screening programs represents a promising approach to improving access to early diagnosis and preventing irreversible vision loss, provided that these technologies are used as an adjunct to, rather than a replacement for, clinical assessment by an ophthalmologist.

References

  • 1. Veselovskaya Z.F., Panchenko Iu.O., Zhupan B.B. et al. (2025) Systemic risk factors for progression of diabetic retinopathy in type 2 diabetes mellitus. Arch. Ukr. Ophthalmol., 13(1): 1–5. DOI: 10.22141/2309-8147.13.1.2025.398.
  • 2. GBD 2021 Diabetes Collaborators (2023) Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet (London, England), 402(10397): 203–234. DOI: 10.1016/S0140-6736(23)01301-6.
  • 3. Teo Z.L., Tham Y.C., Yu M. et al. (2021) Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology, 128(11): 1580–1591. DOI: 10.1016/j.ophtha.2021.04.027.
  • 4. Vision Loss Expert Group of the Global Burden of Disease Study; GBD 2019 Blindness and Vision Impairment Collaborators (2024) Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 2000 to 2020. Eye (London, England), 38(11): 2047–2057. DOI: 10.1038/s41433-024-03101-5.
  • 5. Fenner B.J., Wong R.L.M., Lam W.C. et al. (2018) Advances in Retinal Imaging and Applications in Diabetic Retinopathy Screening: A Review. Ophthalmology and therapy, 7(2): 333–346. DOI: 10.1007/s40123-018-0153-7.
  • 6. Ting D.S.W., Cheung C.Y., Lim G. et al. (2017) Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA, 318(22): 2211–2223. DOI: 10.1001/jama.2017.18152.
  • 7. Pinto I., Olazarán Á., Jurío D. et al. (2025) Improving diabetic retinopathy screening using artificial intelligence: design, evaluation and before-and-after study of a custom development. Front. Digital Health, 7: 1547045. DOI: 10.3389/fdgth.2025.1547045.
  • 8. Lim J.I., Kim S.J., Bailey S.T. et al. American Academy of Ophthalmology Preferred Practice Pattern Retina/Vitreous Committee (2025) Diabetic Retinopathy Preferred Practice Pattern®. Ophthalmology, 132(4): P75–P162. DOI: 10.1016/j.ophtha.2024.12.020.
  • 9. Wilkinson C.P., Ferris F.L. 3rd, Klein R.E. et al. (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 110(9): 1677–1682. DOI: 10.1016/S0161-6420(03)00475-5.
  • 10. Abràmoff M.D., Lavin P.T., Birch M. et al. (2018) Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Med., 1: 39. DOI: 10.1038/s41746-018-0040-6.
  • 11. Sun J.K., Radwan S.H., Soliman A.Z. et al. (2015) Neural Retinal Disorganization as a Robust Marker of Visual Acuity in Current and Resolved Diabetic Macular Edema. Diabetes, 64(7): 2560–2570. DOI: 10.2337/db14-0782.
  • 12. Waheed N.K., Rosen R.B., Jia Y. et al. (2023) Optical coherence tomography angiography in diabetic retinopathy. Progress in retinal and eye research, 97: 101206. DOI: 10.1016/j.preteyeres.2023.101206.
  • 13. Spaide R.F., Fujimoto J.G., Waheed N.K. et al. (2018) Optical coherence tomography angiography. Progress in retinal and eye research, 64: 1–55. DOI: 10.1016/j.preteyeres.2017.11.003.
  • 14. Li Z., Keel S., Liu C. et al. (2018) An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Diabetes care, 41(12): 2509–2516. DOI: 10.2337/dc18-0147.
  • 15. Dharrao D., Dharrao M., Patil S. et al. (2025) AI-driven detection and classification of diabetic retinopathy stages using EfficientNetB0. Discov Appl Sci., 7: 1400. DOI: 10.1007/s42452-025-07998-9.
  • 16. Schmidt-Erfurth U., Sadeghipour A., Gerendas B.S. et al. (2018) Artificial intelligence in retina. Progress in retinal and eye research, 67: 1–29. DOI: 10.1016/j.preteyeres.2018.07.004.
  • 17. Crane A.B., Choudhry H.S., Dastjerdi M.H. (2024) Effect of simulated cataract on the accuracy of artificial intelligence in detecting diabetic retinopathy in color fundus photos. Indian J. Ophthalmol., 72(1): S42–S45. DOI: 10.4103/IJO.IJO_1163_23.
  • 18. Alqahtani A.S., Alshareef W.M., Aljadani H.T. et al. (2025) The efficacy of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis. Int. J. Retina Vitreous, 11(1): 48. DOI: 10.1186/s40942-025-00670-9.
  • 19. Wang Y.L., Yang J.Y., Yang J.Y. et al. (2021) Progress of artificial intelligence in diabetic retinopathy screening. Diabetes/metabolism research and reviews, 37(5): e3414. DOI: 10.1002/dmrr.3414.
  • 20. Arcadu F., Benmansour F., Maunz A. et al. (2019) Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digital Med., 2: 92. DOI: 10.1038/s41746-019-0172-3.
  • 21. Nakayama L.F., Zago Ribeiro L., Novaes F. et al. (2023) Artificial intelligence for telemedicine diabetic retinopathy screening: a review. Ann. Med., 55(2): 2258149. DOI: 10.1080/07853890.2023.2258149.