Wide complex tachycardias

February 6, 2026
35
УДК:  616.124-008.311-08:612.393
Resume

The diagnosis of wide complex tachycardias remains a difficult challenge for physicians of various specialties. This article analyses the main electrocardiographic criteria for the differential diagnosis of ventricular and supraventricular tachycardias with conduction disturbances involving accessory pathways. Particular attention is paid to algorithms that have high specificity and are used in clinical practice for rapid differentiation of tachyarrhythmias. Timely use of highly specific diagnostic algorithms and electrophysiological studies allows to clarify the origin of tachycardia and select the optimal treatment tactics. Clinical signs, patient age, and the presence of structural heart damage are important for making the correct diagnosis and choosing the further management of patients. The article summarises current strategies for pharmacological and electrical cardioversion and provides recommendations for the use of antiarrhythmic drugs, taking into consideration structural heart pathology. The place of catheter ablation and implantation of pacemakers or devices for resynchronisation therapy in various forms of tachyarrhythmias is considered.

Referencces

  • 1. Zeppenfeld K., Tfelt-Hansen J., de Riva M. et al. (2022) ESC Scientific Document Group. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J., 43(40): 3997–4126. doi: 10.1093/eurheartj/ehac262.
  • 2. Moccetti F., Yadava M., Latifi Y. et al. (2022) Simplified Integrated Clinical and Electrocardiographic Algorithm for Differentiation of Wide QRS Complex Tachycardia: The Basel Algorithm. JACC Clin. Electrophysiol., 8(7): 831–839. doi: 10.1016/j.jacep.2022.03.017.
  • 3. LoCoco S., Kashou A.H., Deshmukh A.J. et al. (2024) Dataset and analysis of automated and manual methods to differentiate wide QRS complex tachycardias. Data Brief, 58: 111198. doi: 10.1016/j.dib.2024.111198.
  • 4. LoCoco S., Kashou A.H., Deshmukh A.J. et al. (2024) Direct Comparison of Methods to Differentiate Wide Complex Tachycardias: Novel Automated Algorithms Versus Manual ECG Interpretation Approaches. Circ. Arrhythm Electrophysiol., 17(8): e012663. doi: 10.1161/CIRCEP.123.012663.
  • 5. Cheung C.C., Avram R. (2024) Artificial Intelligence to Interpret Wide-Complex Tachycardia-Trust the Machine? Can. J. Cardiol., 40(10): 1974–1976. doi: 10.1016/j.cjca.2024.05.005.
  • 6. Chow B.J.W., Fayyazifar N., Balamane S. et al. (2024) Interpreting Wide-Complex Tachycardia With the Use of Artificial Intelligence. Can. J. Cardiol., 40(10): 1965–1973. doi: 10.1016/j.cjca.2024.03.027.
  • 7. Kashou A.H., LoCoco S., Gardner M.R. et al. (2023) Mayo Clinic VT calculator: A practical tool for accurate wide complex tachycardia differentiation. Ann. Noninvasive Electrocardiol., 28(6): e13085. doi: 10.1111/anec.13085.
  • 8. Al‑Khatib S.M., Stevenson W.G., Ackerman M.J. et al. (2018) 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias. J. Am. Coll. Cardiol., 72(14): e91–e220. doi:10.1016/j.jacc.2018.08.1049
  • 9. LoCoco S., Kashou A.H., Noseworthy P.A. et al. (2023) The emergence and destiny of automated methods to differentiate wide QRS complex tachycardias. J. Electrocardiol., 81: 44–50. doi: 10.1016/j.jelectrocard.2023.07.008.
  • 10. Brugada J., Katritsis D.G., Arbelo E. et al. (2020) ESC Scientific Document Group. 2019 ESC Guidelines for the management of patients with supraventricular tachycardia. The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC). Eur. Heart J., 41(5): 655–720. doi: 10.1093/eurheartj/ehz467.
  • 11. Condori Leandro H.I., Lebedev D.S., Mikhaylov E.N. (2019) Discrimination of ventricular tachycardia and localization of its exit site using surface electrocardiography. J. Geriatr. Cardiol., 16(4): 362–377. doi: 10.11909/j.issn.1671-5411.2019.04.008.
  • 12. Abedin Z. (2021) Differential diagnosis of wide QRS tachycardia: A review. J. Arrhythmia, 37(5): 1162–1172. doi: 10.1002/joa3.12599.
  • 13. Zharinova O.I., Ivaniva Yu.A., Kuttya V.O. (Eds.) (2021) Functional diagnostics: A text book for general practitioners and doctors — students of institutions (faculties) of postgraduate education of the Ministry of Health of Ukraine. Chetverta Khvylya, Kyiv, 784 p.
  • 14. Hirao K., Otomo K., Wang X. et al. (2019) Clinical and electrophysiological characteristics of idiopathic left ventricular tachycardia. J. Cardiovasc. Electrophysiol., 30(7): 1198–1206. doi: 10.1111/jce.13986.
  • 15. Pava L.F., Perafán P., Badiel M. et al. (2010) R-wave peak time at DII: a new criterion for differentiating between wide complex QRS tachycardias. Heart Rhythm, 7(7): 922–926. doi: 10.1016/j.hrthm.2010.03.001.
  • 16. Pava L.F., Perafán P., Badiel M. et al. (2010) R-Wave Peak Time at Lead DII to Differentiate VT from SVT Aberrancy. Heart Rhythm, 7(6): 676–682. doi: 10.1016/j.hrthm.2010.02.011.
  • 17. Vereckei A. (2014) Current algorithms for the diagnosis of wide QRS complex tachycardias. Curr. Cardiol. Rev., 10(3): 262–276. doi: 10.2174/1573403×10666140514103309.
  • 18. Jastrzebski M., Sasaki K., Kukla P. et al. (2016) The ventricular tachycardia score: a novel approach to electrocardiographic diagnosis of ventricular tachycardia. Europace, 18(4): 578–584. doi: 10.1093/europace/euv118.
  • 19. Vereckei A., Duray G., Szenasi G. et al. (2008) New algorithm using only lead AVR for the differential diagnosis of wide QRS complex tachycardia. Heart Rhythm., 5(1). doi: 10.1016/j.hrthm.2007.09.020.
  • 20. Sun X., Teng Y., Mu S. et al. (2023) Diagnostic accuracy of different ECG-based algorithms in wide QRS complex tachycardia: a systematic review and meta-analysis. BMJ Open, 13(7): e069273. doi: 10.1136/bmjopen-2022-069273.
  • 21. Lerman B.B. (2015) Mechanism, diagnosis, and treatment of outflow tract tachycardia. Nat. Rev. Cardiol., 12(10): 597–608. doi: 10.1038/nrcardio.2015.121.
  • 22. Jastrzębski M., Moskal P., Kukla P. et al. (2018) Specificity of wide QRS complex tachycardia criteria and algorithms in patients with ventricular preexcitation. Ann. Noninvasive Electrocardiol., 23(2): e12493. doi: 10.1111/anec.12493.
  • 23. William J., Kistler P.M., Kalman J.M. et al. (2024) Aberrancy masquerading as ventricular tachycardia: Importance of invasive electrophysiology study for diagnosis of wide complex tachycardias. J. Electrocardiol., 85: 50–57. doi: 10.1016/j.jelectrocard.2024.05.099.
  • 24. Whitaker J., Wright M.J., Tedrow U. (2023) Diagnosis and management of ventricular tachycardia. Clin. Med. (Lond.), 23(5): 442–448. doi: 10.7861/clinmed.2023-23.5.Cardio3.
  • 25. Zharinova O.I., Kuttya V.O. (Eds.) (2025) Clinical Arrhythmology. Chetverta Khvylya, Kyiv, 264 p.
  • 26. Van Gelder I.C., Rienstra M., Bunting K.V. et al. (2024) 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J., 45(36): 3314–3414. doi: 10.1093/eurheartj/ehae176.
  • 27. Glikson M., Nielsen J.C., Kronborg M.B. et al. (2021) 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J., 42(35): 3427–3520. doi: 10.1093/eurheartj/ehab364.
  • 28. McDonagh T.A., Metra M., Adamo M. et al. (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J., 42(36): 3599–3726. doi: 10.1093/eurheartj/ehab368.
  • 29. Chung M.K., Patton K.K., Lau C.P. et al. (2023) 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart Rhythm., 20(9): 17–91. doi: 10.1016/j.hrthm.2023.03.1538.