Study of the effect of dietary supplement Lisoferrin in women with metabolic syndrome

30 червня 2023
1337
УДК:  577.121+616.379-008.64+616.13.002.2-004.6
Спеціальності :
Резюме

The presence of metabolic syndrome (MS) increases the risk of atherosclerotic cardiovascular disease and type 2 diabetes. Correction of MS manifestations is important for reducing cardiovascular risk.

The aim is to study the effect of using a composition of nanoparticles of iron oxide, quercetin and ascorbic acid in women with MS.

Materials and methods. 60 women with MS were divided equally into the main and control groups. Patients of the main group received a composition of dietary supplement Lizoferrin (iron oxide nanoparticles, quercetin and ascorbic acid), patients of the control group received a placebo. Anthropometric indicators, fasting blood glucose concentration and 2 h after oral glucose tolerance test, fasting blood serum lipids, microvascular endothelium function were determined before and 1 month after use of Lizoferrin or placebo.

Results. The use of dietary supplement Lisoferrin led to a decrease in fasting blood glucose and 2 hours after a standard oral glucose tolerance test, total cholesterol and low-density lipoprotein serum concentrations in subjects with atherogenic dyslipidemia. Along with this, an improvement in the functional state of the endothelium of microvessels was noted, as evidenced by an increase in the maximum volume velocity of skin blood flow in a test with reactive hyperemia.

Conclusion. A placebo-controlled study for the first time demonstrated the beneficial effect of a combination of iron oxide nanoparticles, quercetin, and ascorbic acid on cardiovascular risk factors in patients with MS.

References

  1. Grundy S., Cleeman J., Daniels S. et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. American Heart Association; National Heart, Lung, and Blood Institute. Circulation, 112(17): 2735–2752. doi: 10.1161/CIRCULATIONAHA.105.169404.
  2. Guembe M., Fernandez-Lazaro C., Sayon-Orea C.; RIVANA Study Investigators (2020) Risk for cardiovascular disease associated with metabolic syndrome and its components: a 13-year prospective study in the RIVANA cohort. Cardiovasc. Diabetol., 19(1): 195. doi: 10.1186/s12933-020-01166-6.
  3. James M., Varghese T.P., Sharma R., Chand S. (2020) Association Between Metabolic Syndrome and Diabetes Mellitus According to International Diabetic Federation and National Cholesterol Education Program Adult Treatment Panel III Criteria: a Cross-sectional Study. J. Diabetes Metab. Disord., 19(1): 437–443. doi: 10.1007/s40200-020-00523-2.
  4. American Diabetes Association (2021) Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care, 44(1): 34–39. doi: 10.2337/dc21-S003.
  5. Hosseini A., Razavi B.M., Banach M., Hosseinzadeh H. (2021) Quercetin and metabolic syndrome: A review. Phytother. Res., 35(10): 5352–5364. doi: 10.1002/ptr.7144.
  6. Popiolek-Kalisz J., Fornal E. (2022) The Effects of Quercetin Supplementation on Blood Pressure — Meta-Analysis. Curr. Probl. Cardiol., 47(11): 101350. doi: 10.1016/j.cpcardiol.2022.101350.
  7. Huang H., Liao D., Dong Y., Pu R. (2020) Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr. Rev., 78(8): 615–626. doi: 10.1093/nutrit/nuz071.
  8. Tamtaji O.R., Milajerdi A., Dadgostar E. et al. (2019) The Effects of Quercetin Supplementation on Blood Pressures and Endothelial Function Among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr. Pharm. Des., 25(12): 1372–1384. doi: 10.2174/1381612825666190513095352.
  9. Shatylo V., Antoniuk-Shcheglova I., Naskalova S. et al. (2021) Cardio-metabolic benefits of quercetin in elderly patients with metabolic syndrome. PharmaNutrition, 15: 100250. doi: 10.1016/j.phanu.2020.100250.
  10. Dallet L., Stanicki D., Voisin P. et al. (2021) Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment. Sci. Rep., 11(1): 3286. doi: 10.1038/s41598-021-82095-6.
  11. Dulińska-Litewka J., Łazarczyk A., Hałubiec P. et al. (2019) Superparamagnetic Iron Oxide Nanoparticles-Current and Prospective Medical Applications. Materials (Basel), 12(4): 617. doi: 10.3390/ma12040617.
  12. Liu X., Zhang Y., Wang Y. et al. (2020) Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics, 10(8): 3793–3815. doi: 10.7150/thno.40805.
  13. Włodarczyk A., Gorgoń S., Radoń A., Bajdak-Rusinek K. (2022) Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. Nanomaterials (Basel), 12(11): 1807. doi: 10.3390/nano12111807.
  14. Macdougall I.C., Strauss W.E., McLaughlin J. et al. (2014) A randomized comparison of ferumoxytol and iron sucrose for treating iron deficiency anemia in patients with CKD. Clin. J. Am. Soc. Nephrol., 9(4): 705–712. doi: 10.2215/CJN.05320513.
  15. Ali L.M.A., Shaker S.A., Pinol R. et al. (2020) Effect of superparamagnetic iron oxide nanoparticles on glucose homeostasis on type 2 diabetes experimental model. Life Sci., 245: 117361. doi: 10.1016/j.lfs.2020.117361.
  16. Sharifi S., Daghighi S., Motazacker M.M. et al. (2013) Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes. Sci. Rep., 3: 2173. doi: 10.1038/srep02173.
  17. Alsenousy A.H.A., El-Tahan R.A., Ghazal N.A. et al. (2022) The Anti-Obesity Potential of Superparamagnetic Iron Oxide Nanoparticles against High-Fat Diet-Induced Obesity in Rats: Possible Involvement of Mitochondrial Biogenesis in the Adipose Tissues. Pharmaceutics, 14(10): 2134. doi: 10.3390/pharmaceutics14102134.
  18. Enteshari Najafabadi R., Kazemipour N., Esmaeili A. et al. (2018) Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacol. Toxicol., 19(1): 59. doi: 10.1186/s40360-018-0249-7.
  19. Ebrahimpour S., Esmaeili A., Beheshti S. (2018) Effect of quercetin-conjugated superparamagnetic iron oxide nanoparticles on diabetes-induced learning and memory impairment in rats. Int. J. Nanomedicine, 13: 6311–6324. doi: 10.2147/IJN.S177871.
  20. Amanzadeh E., Esmaeili A., Abadi R.E.N. et al. (2019) Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci. Rep., 9(1): 6876. doi: 10.1038/s41598-019-43345-w.
  21. Halbedel B., Prikhna T., Quiroz P. et al. (2018) Iron oxide nanopowder synthesized by electroerosion dispersion (EED) — Properties and potential for microwave applications. Curr. Applied Physics., 8: 1410–1414. doi.org/10.1016/j.cap.2018.08.006.
  22. Cosentino F., Grant P.J., Aboyans V. et al. (2020) ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J., 41(2): 255–323. doi: 10.1093/eurheartj/ehz486.
  23. Korkushko O.V., Gorban E.M., Bondarenko O.V. et al. (2020) Application of quercetin for correction of the impairement of the functional state of the endothelius of vessels (clinical and experimental study). Probl. Radiac. Med. Radiobiol., 25: 321–337. doi: 10.33145/2304-8336-2020-25-321-337.
  24. Kaze A.D., Santhanam P., Musani S.K. et al. (2021) Metabolic Dyslipidemia and Cardiovascular Outcomes in Type 2 Diabetes Mellitus: Findings From the Look AHEAD Study. J. Am. Heart Assoc., 10(7): e016947. doi: 10.1161/JAHA.120.016947.
  25. Daiber A., Steven S., Weber A. et al. (2017) Targeting vascular (endothelial) dysfunction. Br. J. Pharmacol., 174(12): 1591–1619. doi: 10.1111/bph.13517.
  26. Duan J., Du J., Jin R. et al. (2019) Iron oxide nanoparticles promote vascular endothelial cells survival from oxidative stress by enhancement of autophagy. Regen Biomater., 6(4): 221–229. doi: 10.1093/rb/rbz024.