References
- 1. Anahtar M.N., Yang J.H., Kanjilal S. (2021) Applications of machine learning to the problem of antimicrobial resistance: an emerging model for translational research. J. Clin. Microbiol., 59(7): e0126020. doi: 10.1128/JCM.01260-20.
- 2. Benjamins J.W., Hendriks T., Knuuti J. et al. (2019) A primer in artificial intelligence in cardiovascular medicine. Neth. Heart. J., 27(9): 392–402. doi: 10.1007/s12471-019-1286-6.
- 3. Kamphuis B. (2018) Universiteiten kunnen belangstelling voor kunstmatige intelligentie niet aan. Ned. Omroep. Sticht. nos.nl/artikel/2241732-universiteiten-kunnen-belangstelling-voor-kunstmatige-intelligentie-niet-aan.html.
- 4. Mervis J. (2018) MIT to use $350 million gift to bolster computer sciences. Science. http://www.science.org/content/article/mit-use-350-million-gift-bolster-computer-sciences.
- 5. Nikkei Staff Writers (2018) Japan plans 10 «AI hospitals» to ease doctor shortages. asia.nikkei.com/Politics/Japan-plans-10-AI-hospitals-to-ease-doctor-shortages.
- 6. Jiang F., Jiang Y., Zhi H. et al. (2017) Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol., 2(4): 230–243. doi: 10.1136/svn-2017-000101.
- 7. Aung Y.Y.M., Wong D.C.S., Ting D.S.W. (2021) The promise of artificial intelligence: a review of the opportunities and challenges of artificial intelligence in healthcare. Br. Med. Bull., 139(1): 4–15. doi: 10.1093/bmb/ldab016.
- 8. Balyen L., Peto T. (2019) Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia Pac. J. Ophthalmol. (Phila), 8(3): 264–272. doi: 10.22608/APO.2018479.
- 9. Juarez-Orozco L.E., Knol R.J.J., Sanchez-Catasus C.A. et al. (2020) Machine learning in the integration of simple variables for identifying patients with myocardial ischemia. J. Nucl. Cardiol., 27(1): 147–155. doi: 10.1007/s12350-018-1304-x.
- 10. Chen J., See K. (2020) Artificial intelligence for COVID-19: rapid review. J. Med. Internet. Res., 22: e21476. doi: 10.2196/21476.
- 11. Saeed U., Shah S.Y., Ahmad J. et al. (2022) Machine learning empowered COVID-19 patient monitoring using non-contact sensing: An extensive review. J. Pharm. Anal., 12(2): 193–204. doi: 10.1016/j.jpha.2021.12.006.
- 12. Ostaschenko Т.М., Kozak N.D., Kozak D.О. (2021) Coordination aspects of pharmacovigilance system adjustment in terms of the global COVID-19 pandemic. Ukr. J. Mil. Med., 2(4): 161–165. DOI: 10.46847/ujmm.2021.4(2)-161.
- 13. Haymond S., McCudden C. (2021) Rise of the Machines: Artificial Intelligence and the Clinical Laboratory. J. Appl. Lab. Med., 6(6): 1640–1654. doi: 10.1093/jalm/jfab075.
- 14. Paranjape K., Schinkel M., Hammer R.D. et al. (2021) The value of artificial intelligence in laboratory medicine. Am. J. Clin. Pathol., 155(6): 823–831. doi: 10.1093/ajcp/aqaa170.
- 15. Dogan M.V., Grumbach I.M., Michaelson J.J. et al. (2018) Integrated genetic and epigenetic prediction of coronary heart disease in the Framingham Heart Study. PLoS ONE., 13: e0190549. doi: 10.1371/journal.pone.0190549.
- 16. Hui A.T., Alvandi L.M., Eleswarapu A.S. et al. (2022) Artificial intelligence in modern orthopaedics: current and future applications. JBJS Rev., 10(10). doi: 10.2106/JBJS.RVW.22.00086.
- 17. Federer S.J., Jones G.G. (2021) Artificial intelligence in orthopaedics: A scoping review. PLoS One., 16(11): e0260471. doi: 10.1371/journal.pone.0260471.
- 18. Saygılı A., Albayrak S. (2019) An efficient and fast computer-aided method for fully automated diagnosis of meniscal tears from magnetic resonance images. Artif. Intell. Med., 97: 118–130. doi: 10.1016/j.artmed.2018.11.008.
- 19. Carballido-Gamio J., Yu A., Wang L. et al. (2019) Hip fracture discrimination based on statistical multi-parametric modeling (SMPM). Ann. Biomed. Eng., 47(11): 2199–2212. doi: 10.1007/s10439-019-02298-x.
- 20. Ossowska A., Kusiak A., Świetlik D. (2022) Artificial intelligence in dentistry-narrative review. Int. J. Environ. Res. Public Health, 19(6): 3449. doi: 10.3390/ijerph19063449.
- 21. Geetha V., Aprameya K.S., Hinduja D.M. (2020) Dental caries diagnosis in digital radiographs using back-propagation neural network. Health Inf. Sci. Syst., 8: 1–14. doi: 10.1007/s13755-019-0096-y.
- 22. Orhan K., Bayrakdar I.S., Ezhov M. et al. (2020) Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int. Endod. J., 53: 680–689. doi: 10.1111/iej.13265.
- 23. Pauwels R., Brasil D.M., Yamasaki M.C. et al. (2021) Artificial intelligence for detection of periapical lesions on intraoral radiographs: Comparison between convolutional neural networks and human observers. Oral. Surg. Oral Med. Oral Pathol. Oral Radiol., 131: 610–616. doi: 10.1016/j.oooo.2021.01.018.
- 24. Kim B.S., Yeom H.G., Lee J.H. et al. (2021) Deep learning-based prediction of paresthesia after third molar extraction: a preliminary study. Diagnostics, 11: 1572. doi: 10.3390/diagnostics11091572.
- 25. Liu Z., Liu J., Zhou Z. et al. (2021) Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs. Int. J. Comput. Assist. Radiol. Surg., 16: 415–422. doi: 10.1007/s11548-021-02309-0.