Nutritional interventions for overweight and obesity

9 грудня 2022
1144
Спеціальності :
Резюме

The article analyzes modern literature data on the peculiarities of nutrition in overweight and obesity. Recommendations are given for the use of dietary patterns: Mediterranean diet, vegetarian diet, low glycemic index diet, DASH diet, Scandinavian diet, etc. Different dietary approaches are considered: a calorie-restricted dietary approach, a macronutrient-oriented approach, approaches based on individual food groups. It is concluded that obesity nutrition interventions should focus primarily on achieving health outcomes, reducing chronic disease risk, and improving quality of life, rather than solely on weight change.

References

  • 1. Koliaki C., Spinos T., Spinou M. et al. (2018) Defining the Optimal Dietary Approach for Safe, Effective and Sustainable Weight Loss in Overweight and Obese Adults. Healthcare, 6(3). doi:10.3390/healthcare6030073.
  • 2. Johnston B.C., Kanters S., Bandayrel K. et al. (2014) Comparison of Weight Loss Among Named Diet Programs in Overweight and Obese Adults: A Meta-analysis. JAMA, 312(9): 923–933. doi:10.1001/jama.2014.10397.
  • 3. Bray G.A., Heisel W.E., Afshin A. et al. (2018) The science of obesity management: An endocrine society scientifc statement. Endocr. Rev., 39(2): 79–132. doi:10.1210/er.2017-00253.
  • 4. Nackers L.M., Middleton K.R., Dubyak P.J. et al. (2013) Effects of prescribing 1,000 versus 1,500 kilocalories per day in the behavioral treatment of obesity: A randomized trial. Obesity, 21(12): 2481–2487. doi:10.1002/oby.20439.
  • 5. Raynor H.A., Davidson P.G., Burns H. et al. (2018) Medical Nutrition Therapy and Weight Loss Questions for the Evidence Analysis Library Prevention of Type 2 Diabetes Project: Systematic Reviews. J. Acad. Nutr. Diet., 117(10): 1578–1611.
  • 6. Razaz J.M., Rahmani J., Varkaneh H.K. et al. (2019) The health effects of medical nutrition therapy by dietitians in patients with diabetes: A systematic review and meta-analysis. Nutrition therapy and diabetes. Prim. Care Diabetes.
  • 7. Pan B., Wu Y., Yang Q. et al. (2019) The impact of major dietary patterns on glycemic control, cardiovascular risk factors, and weight loss in patients with type 2 diabetes: a network meta-analysis. J. Evid. Based Med., 12(1): 29–39. doi:10.1111/jebm.12312.
  • 8. Estruch R., Ros E., Salas-Salvadó J. et al. (2018) Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med., 378(25): e34.
  • 9. Salas-Salvadó J., Bulló M., Babio N. et al. (2011) Reduction in the Incidence of Type 2 Diabetes With the Mediterranean Diet Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care, 34(1): 14–19. doi:10.2337/dc10-1288.
  • 10. Salas-Salvadó J., Bulló M., Babio N. et al. (2011) Erratum. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care, 41(10): 2259–2260.
  • 11. Babio N., Toledo E., Estruch R. et al. (2014) Mediterranean diets and metabolic syndrome status in the PREDIMED randomized trial. CMAJ, 186(17): E649–E657.
  • 12. The Editors of The Lancet Diabetes Endocrinology (2019) Retraction and republication-Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecifed secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol., 7(5): 334. doi:10.1016/S2213-8587(19)30073-7.
  • 13. Viguiliouk E., Kendall C.W., Kahleová H. et al. (2019) Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes : A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr., 38(3): 1133–1145. doi:10.1016/j.clnu.2018.05.032.
  • 14. Lee Y., Park K. (2017) Adherence to a Vegetarian Diet and Diabetes Risk: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients, 9(6): 603. doi:10.3390/nu9060603.
  • 15. Glenn A.J., Viguiliouk E., Seider M. et al. (2019) Relation of Vegetarian Dietary Patterns With Major Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Front. Nutr., 6: 80. doi:10.3389/fnut.2019.00080.
  • 16. Chiavaroli L., Nishi S.K., Khan T.A. et al. (2018) Portfolio Dietary Pattern and Cardiovascular Disease: A Systematic Review and Meta-analysis of Controlled Trials. Prog. Cardiovasc. Dis., 61(1): 43–53. doi:10.1016/j.pcad.2018.05.004.
  • 17. Chiavaroli L., Kendall C.W.C., Braunstein C.R. et al. (2018) Effect of pasta in the context of low- glycaemic index dietary patterns on body weight and markers of adiposity: a systematic review and meta-analysis of randomised controlled trials in adults. BMJ Open, 8(3): e019438. doi:10.1136/bmjopen-2017-019438.
  • 18. Wang Q., Xia W., Zhao Z., Zhang H. (2015) Effects comparison between low glycemic index diets and high glycemic index diets on HbA1c and fructosamine for patients with diabetes: A systematic review and meta-analysis. Prim. Care Diabetes, 9(5): 362–369.
  • 19. Goff L.M., Cowland D.E., Hooper L. (2013) Low glycaemic index diets and blood lipids : a systematic review and meta-analysis of randomised controlled trials. Nutr. Metab. Cardiovasc. Dis., 23(1): 1–10. doi:10.1016/j.numecd.2012.06.002.
  • 20. Evans C.E.L., Greenwood D.C., Threapleton D.E. et al. (2017) Glycemic index, glycemic load, and blood pressure: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr., 105(5): 1176–1190. doi:10.3945/ajcn.116.143685.
  • 21. Livesey G., Taylor R., Livesey H.F. et al. (2019) Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: A Systematic Review and Updated Meta-Analyses of Prospective Cohort Studies. Nutrients, 11(6): 1280.
  • 22. Livesey G., Livesey H. (2019) Coronary Heart Disease and Dietary Carbohydrate, Glycemic Index, and Glycemic Load: Dose-Response Meta-analyses of Prospective Cohort Studies. Mayo Clin. Proc. Innov. Qual. Outcomes, 3(1): 52–69. doi:10.1016/j.mayocpiqo.2018.12.007.
  • 23. Soltani S., Shirani F., Chitsazi M.J., Salehi-Abargouei A. (2016) The effect of dietary approaches to stop hypertension (DASH) diet on weight and body composition in adults : a systematic review and meta — analysis of randomized controlled clinical trials. Obes. Rev., 17(5): 442–454.
  • 24. Chiavaroli L., Viguiliouk E., Nishi S.K. et al. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients. 2019; 11(2): 338. doi:10.3390/nu11020338.
  • 25. Soltani S., Chitsazi M.J., Salehi-Abargouei A. (2018) The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: A systematic review and meta-analysis of randomized trials. Clin. Nutr., 37(2): 542–550.
  • 26. Poulsen S.K., Due A., Jordy A.B. et al. (2014) Health effect of the New Nordic Diet in adults with increased waist circumference: a 6-mo randomized controlled trial. Am. J. Clin. Nutr., 99(1): 35–45. doi:10.3945/ajcn.113.069393.
  • 27. Viguiliouk E., Nishi S.K., Wolever T.M.S., Sievenpiper J.L. (2018) Point: Glycemic index’an important but oft misunderstood marker of carbohydrate quality. Cereal. Foods World, 63(4): 158–164. doi:10.1094/CFW-63-4-0158.
  • 28. Thomas D., Elliott E.J., Baur L. (2007) Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst. Rev., 18(3). doi:10.1002/14651858.CD006296.pub2.
  • 29. Livesey G., Taylor R., Hulshof T., Howlett J. (2008) Glycemic response and health — A systematic review and meta-analysis: Relations between dietary glycemic properties and health outcomes. Am. J. Clin. Nutr., 87(1): 258S–268S. doi:10.1093/ajcn/87.1.258s.
  • 30. Poulsen S.K., Crone C., Astrup A., Larsen T.M. (2015) Long-term adherence to the New Nordic Diet and the effects on body weight, anthropometry and blood pressure: a 12-month follow-up study. Eur. J. Nutr., 54(1): 67–76.
  • 31. Adamsson V., Reumark A., Fredriksson I. et al. (2010) Effects of a healthy Nordic diet on cardiovascular risk factors in hypercholesterolaemic subjects: a randomized controlled trial (NORDIET). J. Intern. Med., 269(2): 150–159. doi:10.1111/j.1365-2796.2010.02290.x.
  • 32. Uusitupa M., Hermansen K., Savolainen M.J. et al. (2013) Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profle and inflammation markers in metabolic syndrome — a randomized study (SYSDIET). J. Intern. Med., 274(1): 52–66. doi:10.1111/joim.12044.
  • 33. Lemming E.W., Byberg L., Wolk A., Michaëlsson K. (2018) A comparison between two healthy diet scores, the modi f ed Mediterranean diet score and the Healthy Nordic Food Index, in relation to all-cause and cause-specific mortality. Br. J. Nutr., 119(7): 836–846. doi:10.1017/S0007114518000387.
  • 34. Trumbo P., Schlicker S., Yates A.A., Poos M. (2002) Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet Assoc., 102(11): 1621–1630. doi:10.1016/S0002-8223(02)90346-9.
  • 35. Gardner C.D., Trepanowski J.F., Gobbo L.C.D. et al. (2018) Effect of low-fat VS low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion the DIETFITS randomized clinical trial. JAMA, 319(7): 667–679. doi:10.1001/jama.2018.0245.
  • 36. Viguiliouk E., Stewart S.E., Jayalath V.H. et al. (2015) Effect of replacing animal protein with plant protein on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 7(12): 9804–9824. doi:10.3390/nu7125509.
  • 37. Li S.S., Mejia S.B., Lytvyn L. et al. (2017) Effect of plant protein on blood lipids: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc., 6(12): e006659. doi:10.1161/JAHA.117.006659.
  • 38. Kim S.J., Souza R.J., Choo V.L. et al. (2016) Effects of dietary pulse consumption on body weight: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr., 103(5): 1213–1223. doi:10.3945/ajcn.115.124677.1.
  • 39. Sievenpiper J.L., Kendall C.W.C., Esfahani A. (2009) Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia, 52(8): 1479-1495. doi:10.1007/s00125-009-1395-7.
  • 40. Ha V., Sievenpiper J.L., De Souza R.J. et al. (2014) Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials. Cmaj, 186(8): E252–E262.
  • 41. Jayalath V.H., Souza R.J., Sievenpiper J.L. et al. (2013) Effect of Dietary Pulses on Blood Pressure: A Systematic Review and Meta-analysis of Controlled Feeding Trials. Am. J. Hypertens., 27(1): 56–64. doi:10.1093/ajh/hpt155.
  • 42. Viguiliouk E., Mejia S.B., Kendall C.W., Sievenpiper J.L. (2017) Can pulses play a role in improving cardiometabolic health? Evidence from systematic reviews and meta‐analyses. Ann. N.Y. Acad. Sci., 1392(1): 43.
  • 43. Shin J.Y., Kim J.Y., Kang H.T. et al. (2015) Effect of fruits and vegetables on metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Int. J. Food Sci. Nutr., 66(4): 416–425.
  • 44. Moazzen S., Amani R., Homayouni A., Shahbazian H. (2013) Effects of Freeze-Dried Strawberry Supplementation on Metabolic Biomarkers of Atherosclerosis in Subjects with Type Diabetes: A Randomized Double-Blind Controlled. Ann. Nutr. Metab., 63(3): 256–264. doi:10.1159/000356053.
  • 45. Schwingshackl L., Hoffmann G., Lampousi A.-M. et al. (2017) Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol., 32(5): 363–375. doi:10.1007/s10654-017-0246-y.
  • 46. Wang X., Ouyang Y., Liu J. et al. (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ, 349: g4490. doi:10.1136/bmj.g5472.
  • 47. Viguiliouk E., Kendall C.W.C., Mejia S.B. et al. (2014) Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials. PLoS One, 9(7): e103376. doi:10.1371/journal.pone.0103376.
  • 48. Sabaté J., Oda K., Ros E. (2010) Nut consumption and blood lipid levels: a pooled analysis of 25 intervention trials. Arch. Intern. Med., 170(9): 821–827. doi:10.1001/archinternmed.2010.79.
  • 49. Bao Y., Han J., Hu F.B. et al. (2013) Association of nut consumption with total and cause-specific mortality. N. Engl. J. Med., 369(21): 2001–2011. doi:10.1056/NEJMoa1307352.
  • 50. Hollænder P.L.B., Ross A.B., Kristensen M. (2015) Whole-grain and blood lipid changes in apparently healthy adults: A systematic review and meta-analysis of randomized controlled studies. Am. J. Clin. Nutr., 102(3): 556–572. doi:10.3945/ajcn.115.109165.
  • 51. Geng T., Qi L., Huang T. (2018) Effects of Dairy Products Consumption on Body Weight and Body Composition Among Adults: An Updated Meta-Analysis of 37 Randomized Control Trials. Mol. Nutr. Food Res., 62(1). doi:10.1002/mnfr.201700410.
  • 52. Reynolds A., Mann J., Cummings J. et al. (2019) Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet, 393(10170): 434–445. doi:10.1016/S0140-6736(18)31809-9.
  • 53. Cioff I., Evangelista A., Ponzo V. et al. (2018) Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: a systematic review and meta — analysis of randomized controlled trials. J. Transl. Med., 16(1): 371. doi:10.1186/s12967-018-1748-4.
  • 54. Golzarand M., Hollis B.W., Mirmiran P. et al. (2018) Vitamin D supplementation and body fat mass: a systematic review and meta-analysis. Eur. J. Clin. Nutr., 72(10): 1345–1357. doi:10.1038/s41430-018-0132-z.
  • 55. Mallard S.R., Howe A.S., Houghton L.A. (2016) Vitamin D status and weight loss: A systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. Am. J. Clin. Nutr., 104(4): 1151–1159. doi:10.3945/ajcn.116.136879.
  • 56. Rafq S., Jeppesen P.B. (2018) Body mass index, vitamin d, and type 2 diabetes: A systematic review and meta-analysis. Nutrients, 10(9): 1182. doi:10.3390/nu10091182.
  • 57. Wing R., Bolin P., Brancati F. et al. (2013) Cardiovascular Effects of Intensive Lifestyle Intervention in Type 2 Diabetes. N. Engl. J. Med., 369(2): 145–154. doi:10.1007/s11883-014-0457-6.
  • 58. Knowler W., Barrett-Connor E., Fowler S. et al. (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med., 346(6): 393–403.
  • 59. Gong Q., Zhang P., Wang J. et al. (2019) Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol., 7(6): 452–461. doi:10.1016/S2213-8587(19)30093-2.
  • 60. Lean M.E.J., Leslie W.S., Barnes A.C. et al. (2019) Durability of a primary careled weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol., 7(5): 344–355. doi:10.1016/S2213-8587(19)30068-3.
  • 61. Look AHEAD Research Group (2014) Effect of a Long-Term Behavioral Weight Loss Intervention on Nephropathy in Overweight or Obese Adults with Type 2 Diabetes: the Look AHEAD Randoized Clinial Trial. Lancet Diabetes Endocrinol., 2(10): 801–809. doi:10.1016/S2213-8587(14)70156-1.
  • 62. Kuna S.T., Reboussin D.M., Borradaile K.E. et al. (2013) Long-term effect of weight loss on obstructive sleep apnea severity in obese patients with type 2 diabetes. Arch. Intern. Med., 36(5): 641–649. doi:10.1001/archinternmed.2009.266.
  • 63. Rubin R., Wadden T., Bahnson J. et al. (2014) Impact of intensive lifestyle intervention on depression and health-related quality of life in type 2diabetes: The look AHEAD trial. Diabetes Care, 37(6): 1544–1553. doi:10.2337/dc13-1928.
  • 64. Cho Y., Hong N., Kim K. et al. (2019) The effectiveness of intermittent fasting to reduce body mass index and glucose metabolism: A systematic review and meta-analysis. J. Clin. Med., 8(10): 1645.
  • 65. obesitycanada.ca/guidelines/nutrition.
  • 66. obesitycanada.ca/guidelines/pharmacotherapy.