References
- 1. Torres N., Guevara-Cruz M., Velázquez-Villegas L., Tovar, A. (2015) Nutrition and Atherosclerosis. Arch. Med. Res., 46(5): 408–426. doi: 10.1016/j.arcmed.2015.05.010
- 2. Falk E. (2006) Pathogenesis of Atherosclerosis. J. Am. Coll. Cardiol., 47(8): C7–C12. doi: 10.1016/j.jacc.2005.09.068.
- 3. Zhu Y., Xian X., Wang Z. et al. (2018). Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules, 8(3): 80. doi: 10.3390/biom8030080.
- 4. Mach, F., Baigent, C., Catapano, A. et al. (2019). 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J., 41(1): 111–188. doi: 10.1093/eurheartj/ehz455.
- 5. Nazni P. (2014) Association of western diet & lifestyle with decreased fertility. Indian J. Med. Res., 140(Suppl. 1): S78–S81.
- 6. Murphy C., Byrne J., Keogh J. et al. (2021) The Acute Effect of Magnesium Supplementation on Endothelial Function: A Randomized Cross-Over Pilot Study. Int. J. Envir. Res. Public Health, 18(10): 5303. doi: 10.3390/ijerph18105303.
- 7. Filippou C., Tsioufis C., Thomopoulos C. et al. (2020) Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutrition, 11(5): 1150–1160. doi: 10.1093/advances/nmaa041.
- 8. Galbete C., Kröger J., Jannasch F. et al. (2018) Nordic diet, Mediterranean diet, and the risk of chronic diseases: the EPIC-Potsdam study. BMC Med., 16(1). doi: 10.1186/s12916-018-1082-y.
- 9. Christ A., Lauterbach M., Latz E. (2019) Western Diet and the Immune System: An Inflammatory Connection. Immunity, 51(5): 794–811. doi: 10.1016/j.immuni.2019.09.020.
- 10. Bibbò S., Ianiro G. Giorgio V. et al. (2016) The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci., 20(22): 4742–4749.
- 11. Myles I. (2014) Fast food fever: reviewing the impacts of the Western diet on immunity. Nutrition J., 13(61). doi: 10.1186/1475-2891-13-61.
- 12. Shively C., Appt S., Vitolins M. et al. (2019) Mediterranean versus Western Diet Effects on Caloric Intake, Obesity, Metabolism, and Hepatosteatosis in Nonhuman Primates. Obesity, 27(5): 777–784. doi: 10.1002/oby.22436.
- 13. Ruiz-Núñez B., Dijck-Brouwer D., Muskiet F. (2016) The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J. Nutr. Biochem., 36: 1–20. doi: 10.1016/j.jnutbio.2015.12.007.
- 14. Islam M., Amin M., Siddiqui S. et al. (2019) Trans fatty acids and lipid profile: A serious risk factor to cardiovascular disease, cancer and diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(2): 1643–1647. doi: 10.1016/j.dsx.2019.03.033.
- 15. Püschel G., Henkel J. (2018) Dietary cholesterol does not break your heart but kills your liver. Porto Biomedical J., 3(1): e12. doi: 10.1016/j.pbj.0000000000000012.
- 16. Chaplin A., Carpéné C., Mercader J. (2018) Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients, 10(11): 1651. doi: 10.3390/nu10111651.
- 17. Farrell G., Schattenberg J., Leclercq I. et al. (2019) Mouse Models of Nonalcoholic Steatohepatitis: Toward Optimization of Their Relevance to Human Nonalcoholic Steatohepatitis. Hepatology, 69(5): 2241–2257. doi: 10.1002/hep.30333.
- 18. Khan S., Waliullah S., Godfrey V. et al. (2020) Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci. Transl. Med., 12(567): eaay6218. doi: 10.1126/scitranslmed.aay6218.
- 19. Martinez K., Leone V., Chang, E. (2017) Western diets, gut dysbiosis, and metabolic diseases: Are they linked? Gut Microbes, 8(2): 130–142. doi: 10.1080/19490976.2016.1270811.
- 20. Kim Y., Keogh J., Clifton P. (2016) Differential Effects of Red Meat/Refined Grain Diet and Dairy/Chicken/Nuts/Whole Grain Diet on Glucose, Insulin and Triglyceride in a Randomized Crossover Study. Nutrients, 8(11): 687. doi: 10.3390/nu8110687.
- 21. Vanegas S., Meydani M., Barnett J. et al. (2017) Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am. J. Clin. Nutr., 105(3): 635–650. doi: 10.3945/ajcn.116.146928.
- 22. Gaesser G. (2019) Perspective: Refined Grains and Health: Genuine Risk, or Guilt by Association? Advances In Nutrition, 10(3): 361–371. doi: 10.1093/advances/nmy104.
- 23. Innes J., Calder P. (2018) Omega-6 fatty acids and inflammation. Prostaglandins, Leukotrienes And Essential Fatty Acids, 132: 41–48. doi: 10.1016/j.plefa.2018.03.004.
- 24. Simopoulos A. (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8): 365–379. doi: 10.1016/s0753-3322(02)00253-6.
- 25. Patterson E., Wall R., Fitzgerald G. et al. (2012) Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids. J. Nutr. Metabol., 2012: 1–16. doi: 10.1155/2012/539426.
- 26. Biesiekierski J. (2017) What is gluten? J. Gastroenterol. Hepatol., 32: 78–81. doi: 10.1111/jgh.13703.
- 27. Kumar J., Kumar M., Pandey R., Chauhan N. (2017) Physiopathology and Management of Gluten-Induced Celiac Disease. J. Food Sci., 82(2): 270–277. doi: 10.1111/1750-3841.13612.
- 28. Lexhaller L. (2019) Comprehensive Detection of Isopeptides between Human Tissue Transglutaminase and Gluten Peptides. Nutrients, 11(10): 2263. doi: 10.3390/nu11102263.
- 29. Sanchez-Lozada L., Rodriguez-Iturbe B., Kelley E. et al. (2020) Uric Acid and Hypertension: An Update With Recommendations. Am. J. Hypertens., 33(7): 583–594. doi: 10.1093/ajh/hpaa044.
- 30. Bove M., Cicero A., Veronesi M., Borghi C. (2017) An evidence-based review on urate-lowering treatments: implications for optimal treatment of chronic hyperuricemia. Vascular Health And Risk Management, 13: 23–28. doi: 10.2147/vhrm.s115080.
- 31. Koeth R., Lam-Galvez B., Kirsop J. et al. (2018) l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J. Clin. Invest., 129(1): 373–387. doi: 10.1172/jci94601.
- 32. Koeth R., Wang Z., Levison B. et al. (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Med., 19(5): 576–585. doi: 10.1038/nm.3145.
- 33. Ding L., Chang M., Guo Y. et al. (2018) Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids In Health And Disease, 17(1). doi: 10.1186/s12944-018-0939-6.
- 34. Verhaar B., Prodan A., Nieuwdorp M., Muller M. (2020) Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients, 12(10): 2982. doi: 10.3390/nu12102982.
- 35. Zhu Y., Li, Q., Jiang H. (2020) Gut microbiota in atherosclerosis: focus on trimethylamine N‐oxide. APMIS, 128(5): 353–366. doi: 10.1111/apm.13038.
- 36. Hasegawa S., Ichiyama T., Sonaka I. et al. (2012) Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clin. Experiment. Immunol., 167(2): 269–274. doi: 10.1111/j.1365-2249.2011.04519.x.
- 37. Tanimoto A., Sasaguri Y., Ohtsu H. (2006) Histamine Network in Atherosclerosis. Trends In Cardiovasc. Med., 16(8): 280–284. doi: 10.1016/j.tcm.2006.06.001.
- 38. Halder M., Petsophonsakul P., Akbulut A. et al. (2019) Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. Int. J. Mol. Sci., 20(4): 896. doi: 10.3390/ijms20040896.
- 39. Lang U., Beglinger C., Schweinfurth N. et ak. (2015) Nutritional Aspects of Depression. Cellular Physiol. Biochem., 37(3): 1029–1043. doi: 10.1159/000430229.
- 40. Maresz K. (2015) Proper Calcium Use: Vitamin K2 as a Promoter of Bone and Cardiovascular Health. Integr. Med. (Encinitas), 14(1): 34–39.
- 41. Riccio P., Rossano R. (2017) Diet, Gut Microbiota, and Vitamins D+A in Multiple Sclerosis. Neurotherapeutics, 15(1): 75–91. doi: 10.1007/s13311-017-0581-4.
- 42. Schwalfenberg G., Genuis S. (2017) The Importance of Magnesium in Clinical Healthcare. Scientifica, 2017: 1–14. doi: 10.1155/2017/4179326.
- 43. Soliman G. (2019) Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients, 11(5): 1155. doi: 10.3390/nu11051155.
- 44. Hijová E., Bertková I., Štofilová J. (2019) Dietary fibre as prebiotics in nutrition. Centr. Eur. J. Public Health, 27(3): 251–255. doi: 10.21101/cejph.a5313.
- 45. Dawson M. (2000) The Importance of Vitamin A in Nutrition. Curr. Pharm. Design, 6(3): 311–325. doi: 10.2174/1381612003401190.
- 46. Kadri A., Sjahrir H., Sembiring R., Ichwan M. (2020) Combination of vitamin A and D supplementation for ischemic stroke: effects on interleukin-1ß and clinical outcome. Med. Glas .(Zenica), 17(2): 425–432. doi: 10.17392/1137-20.
- 47. Ravn H., Korsholm T., Falk E. (2001) Oral magnesium supplementation induces favorable antiatherogenic changes in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol., 21: e858–e862.
- 48. Rosanoff A., Seelig M. (2004) Comparison of Mechanism and Functional Effects of Magnesium and Statin Pharmaceuticals. J. Am. Coll. Nutr., 23(5): 501S–505S. doi: 10.1080/07315724.2004.10719389.
- 49. Maier J. (2011) Endothelial cells and magnesium: implications in atherosclerosis. Clin. Sci., 122(9): 397–407. doi: 10.1042/cs20110506.
- 50. Fanni D., Gerosa C., Nurchi V. et al. (2021) Trace elements and the carotid plaque: the GOOD (Mg, Zn, Se), the UGLY (Fe, Cu), and the BAD (P, Ca)? Eur. Rev. Med. Pharmacol. Sci., 25(10): 3772–3790. doi: 10.26355/eurrev_202105_25945.
- 51. Schutten J., Joris P., Mensink R. et al. (2019) Effects of magnesium citrate, magnesium oxide and magnesium sulfate supplementation on arterial stiffness in healthy overweight individuals: a study protocol for a randomized controlled trial. Trials, 20(1). doi: 10.1186/s13063-019-3414-4.
- 52. Jenkins D., Spence J., Giovannucci E. et al. (2018) Supplemental Vitamins and Minerals for CVD Prevention and Treatment. J. Am. Coll. Cardiol., 71(22): 2570–2584. doi: 10.1016/j.jacc.2018.04.020.
- 53. Kodentsova V., Mendel O., Khotimchenko S. et al. (2017) Physiological needs and effective doses of vitamin D for deficiency correction. Current state of the problem. Voprosypitaniia [Problems of Nutrition], 86(2): 47–62. (in Rus.).
- 54. Latic N., Erben R. (2020) Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int. J. Mol. Sci., 21(18): 6483. doi: 10.3390/ijms21186483.
- 55. Rodrigues I., Pinho C., Sobral Filho D. et al. (2021) The impact of visceral fat and levels of vitamin D on coronary artery calcification. Rev. Da Assoc. Méd. Bras., 67(1): 88–93. doi: 10.1590/1806-9282.67.01.20200388.
- 56. Yaylali G., Dedeoglu O., Topsakal S. et al. (2021) Relationships among Bone Metabolic Markers, Body Fat Composition and Carotid Intima-Media Thickness in Premenopausal Obese Women Acta Med Okayama, 75(3): 373–379. doi: 10.18926/AMO/62233.
- 57. Foroughinia F., Mirjalili M. (2020) Association between Serum Vitamin D Concentration Status and Matrix Metalloproteinase-9 in Patients Undergoing Elective Percutaneous Coronary InterventionIran. J. Pharm. Res., 19(4): 135–142. doi: 10.22037/ijpr.2020.112292.13670.
- 58. Zittermann A., Trummer C., Theiler-Schwetz V. et al. (2021) Vitamin D and Cardiovascular Disease: An Updated Narrative Review. Int. J. Mol. Sci., 22(6): 2896. doi: 10.3390/ijms22062896.
- 59. Izzo M., Carrizzo A., Izzo C. et al. (2021) Vitamin D: Not Just Bone Metabolism but a Key Player in Cardiovascular Diseases. Life, 11(5): 452. doi: 10.3390/life11050452.
- 60. Sokol S., Srinivas V., Crandall J. et al. (2012) The effects of vitamin D repletion on endothelial function and inflammation in patients with coronary artery disease. Vasc. Med., 17(6): 394–404. doi: 10.1177/1358863×12466709.
- 61. Witham M., Dove F., Khan F. et al. (2013) Effects of Vitamin D supplementation on markers of vascular function after myocardial infarction — A randomised controlled trial. Int. J. Cardiol., 167(3): 745–749. doi: 10.1016/j.ijcard.2012.03.054.
- 62. Florea A., Kooi M., Mess W. et al. (2021) Effects of Combined Vitamin K2 and Vitamin D3 Supplementation on Na[18F]F PET/MRI in Patients with Carotid Artery Disease: The INTRICATE Rationale and Trial Design. Nutrients, 13(3): 994. doi: 10.3390/nu13030994.
- 63. Mozos I., Stoian D., Luca C. (2017) Crosstalk between Vitamins A, B12, D, K, C, and E Status and Arterial Stiffness. Disease Markers, 2017: 1–14. doi: 10.1155/2017/8784971.
- 64. El Asmar M., Naoum J., Arbid E. (2014) Vitamin K Dependent Proteins and the Role of Vitamin K2 in the Modulation of Vascular Calcification: A Review. Oman Med. J., 29(3): 172–177. doi: 10.5001/omj.2014.44.
- 65. Bar A., Kus K., Manterys A. et al. (2019) Vitamin K2-MK-7 improves nitric oxide-dependent endothelial function in ApoE/LDLR-/-mice. Vasc. Pharmacol., 122–123, 106581. doi: 10.1016/j.vph.2019.106581.
- 66. Shioi A., Morioka T., Shoji T., Emoto M. (2020) The Inhibitory Roles of Vitamin K in Progression of Vascular Calcification. Nutrients, 12(2): 583. doi: 10.3390/nu12020583.
- 67. Zinöcker M., Lindseth I. (2018) The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients, 10(3): 365. doi: 10.3390/nu10030365.
- 68. Carracedo M., Artiach G., Arnardottir H., Bäck M. (2019) The resolution of inflammation through omega-3 fatty acids in atherosclerosis, intimal hyperplasia, and vascular calcification. Seminars In Immunopathology, 41(6): 757–766. doi: 10.1007/s00281-019-00767-y.
- 69. Zehr K., Walker M. (2018) Omega-3 polyunsaturated fatty acids improve endothelial function in humans at risk for atherosclerosis: A review. Prostaglandins & Other Lipid Mediators, 134: 131–140. doi: 10.1016/j.prostaglandins.2017.07.005.
- 70. Spence J. (2019) Nutrition and Risk of Stroke. Nutrients, 11(3): 647. doi: 10.3390/nu11030647.