Endothelial dysfunction in COVID-19 (literature review)

23 червня 2021
1014
Резюме

It has been repeatedly confirmed that the virus SARS-CoV-2 — the cause of a pandemic COVID-19 worldwide — is involved in the development or aggravation of existing endothelial dysfunction. The main route of penetration of the virus into the human body are ACE2 receptors, which are expressed, including on endothelial cells. Once in the host cells, SARS-CoV-2 stimulates the processes of local inflammation, as a result of which cytokines begin to be intensively released, which in turn also have a negative effect on the endothelium. The cytokine storm-activated complement pathways lead to even greater synthesis of cytokines, as well as increased production of adhesion molecules. The inflammatory process in endothelial cells stimulates procoagulant, prothrombotic and antifibrinolytic factors that adversely affect the blood coagulation process. In addition, excessive synthesis of vasoconstrictor factors by activated endothelium promotes hypercoagulated processes in the body. The article discusses the main mechanisms for the development of endothelial dysfunction in COVID-19. Understanding the pathogenesis of this pathology will make it possible to identify certain aspects of treatment and prevention of complications in patients with COVID-19, which will help to cope with complications and high mortality from this disease.

References:

  • 1. Khan A.A., Thomas G.N., Lip G.Y.H., Shantsila A. (2020) Endothelial function in patients with atrial fibrillation. Annals of Medicine, 52(1–2): 1–11. doi.org/10.1080/07853890.2019.1711158.
  • 2. Ataman O.V. (2018) Pathophysiology. In 2 vol. New book, Vinnytsia (nk.in.ua/pdf/1621.pdf). (In Ukr.).
  • 3. Shevchuk V.G., Moroz V.M., Belan S.M. et al. (2012) Physiology. New book, Vinnytsia (chmnu.edu.ua/wp-content/uploads/2016/07/za-red.-V.G.SHevchuka-Fiziologiya.pdf). (In Ukr.).
  • 4. Chhabra N. (2009) Endothelial dysfunction — A predictor of atherosclerosis. Internet Journal of Medical Update, 4(1): 33–41. http://www.geocities.com/agnihotrimed.
  • 5. Förstermann U., Sessa W.C. (2012) Nitric oxide synthases: Regulation and function. Eur. Heart J., 33(7): 829–837. doi.org/10.1093/eurheartj/ehr304.
  • 6. Michel J. (1998) Role of endothelial nitric oxide in the regulation of the vasomotor system (pubmed.ncbi.nlm.nih.gov/9769914/).
  • 7. Colantuoni A., Martini R., Caprari P. et al. (2020) COVID-19 Sepsis and Microcirculation Dysfunction. Frontiers in Physiology, 11: 747. doi.org/10.3389/fphys.2020.00747.
  • 8. Ritter A., Kreis N.N., Louwen F., Yuan J. (2020) Obesity and covid-19: Molecular mechanisms linking both pandemics. Int. J. Mol. Sci., 21(16): 1–28. doi.org/10.3390/ijms21165793.
  • 9. Zhao Y., Vanhoutte P.M., Leung S.W.S. (2015) Vascular nitric oxide: Beyond eNOS. J. Pharm. Sci., 129(2): 83–94. doi.org/10.1016/j.jphs.2015.09.002.
  • 10. Gewaltig M.T., Kojda G. (2002) Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc. Res., 55(2): 250–260. doi.org/10.1016/S0008-6363(02)00327-9.
  • 11. Koyama Y. (2013) Endothelin systems in the brain: Involvement in pathophysiological responses of damaged nerve tissues. Biomolecular Concepts, 4(4): 335–347. doi.org/10.1515/bmc-2013-0004.
  • 12. Jung F., Krüger-Genge A., Franke R.P. et al. (2020) COVID-19 and the endothelium. Clin. Hemorheol. Microcirc., 75(1): 7–11. doi.org/10.3233/CH-209007.
  • 13. Rajendran P., Rengarajan T., Thangavel J. et al. (2013) The vascular endothelium and human diseases. Int. J. Biol. Sci., 9(10): 1057–1069. doi.org/10.7150/ijbs.7502.
  • 14. Korakas E., Ikonomidis I., Kousathana F. et al. (2020) Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am. J. Physiol. Endocrinol. Metabol., 319(1): E105–E109. doi.org/10.1152/ajpendo.00198.2020.
  • 15. Carfora V., Spiniello G., Ricciolino R. et al. (2020) Anticoagulant treatment in COVID-19: a narrative review. J. Thrombosis Thrombolysis, 1–7. doi.org/10.1007/s11239-020-02242-0.
  • 16. Babushkina А.V. (2009) L-Arginine from an Evidence-Based Medicine Perspective. UMJ, 74(6): 43–48.
  • 17. Ahmed S., Zimba O., Gasparyan A.Y. (2020) Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow’s triad. Clin. Rheumatol, 39: 2529–2543. doi.org/10.1007/s10067-020-05275-1.
  • 18. Amraei R., Rahimi N. (2020) COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells, 9(7): 1652. doi.org/10.3390/cells9071652.
  • 19. Jothimani D., Venugopal R., Abedin M.F. et al. (2020) COVID-19 and the liver. J. Hepatol., 73(5): 1231–1240. doi.org/10.1016/j.jhep.2020.06.006.
  • 20. Huang C., Wang Y., Li X. et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223): 497–506. doi.org/10.1016/S0140-6736(20)30183-5.
  • 21. bestmaps.ru/COVID19
  • 22. Varga Z., Flammer A.J., Steiger P. et al. (2020) Endothelial cell infection and endotheliitis in COVID-19. The Lancet, 395(10234): 1417–1418. doi.org/10.1016/S0140-6736(20)30937-5.
  • 23. Amraie R., Napoleon M.A., Yin W. et al. (2020) CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2 and are differentially expressed in lung and kidney epithelial and endothelial cells. BioRxiv, 1–25. doi.org/10.1101/2020.06.22.165803.
  • 24. Cantuti-Castelvetri L., Ojha R., Pedro L.D. et al. (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 370(6518): 856–860. doi.org/10.1126/science.abd2985.
  • 25. Kipshidze N., Dangas G., White C.J. et al. (2020) Viral Coagulopathy in Patients With COVID-19: Treatment and Care. Clin. Appl. Thromb. Hemost., 26: 1–7. doi.org/10.1177/1076029620936776.
  • 26. Pons S., Fodil S., Azoulay E., Zafrani L. (2020) The vascular endothelium: The cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Critical Care, 24(353): 1–8. doi.org/10.1186/s13054-020-03062-7.
  • 27. Del Turco S., Vianello A., Ragusa R. et al. (2020) COVID-19 and cardiovascular consequences: Is the endothelial dysfunction the hardest challenge? Thromb. Res., 196: 143–151. doi.org/10.1016/j.thromres.2020.08.039.
  • 28. Yan R., Zhang Y., Li Y. et al. (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485): 1444–1448. doi.org/10.1126/science.abb2762.
  • 29. Hoffmann M., Kleine-Weber H., Schroeder S. et al. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181: 271–280. doi.org/10.1016/j.cell.2020.02.052.
  • 30. Iwata-Yoshikawa N., Okamura T., Shimizu Y. et al. (2019) TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. J. Virol., 93(6): 1815–1833. doi.org/10.1128/jvi.01815-18.
  • 31. McFadyen J.D., Stevens H., Peter K. (2020) The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications. Circ. Res., 127(4): 571–587. doi.org/10.1161/CIRCRESAHA.120.317447.
  • 32. Su H., Yang M., Wan C. et al. (2020) Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int., 98(1): 219–227. doi.org/10.1016/j.kint.2020.04.003.
  • 33. Hamming I., Timens W., Bulthuis M. et al. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 203(2): 631–637. doi.org/10.1002/path.1570.
  • 34. Leisman D.E., Deutschman C.S., Legrand M. (2020) Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intens. Care Med., 46(6): 1105–1108. doi.org/10.1007/s00134-020-06059-6.
  • 35. Alharthy A., Faqihi F., Memish Z.A., Karakitsos D. (2020) Fragile Endothelium and Brain Dysregulated Neurochemical Activity in COVID-19. ACS Chemical Neuroscience, 11(15): 2159–2162. doi.org/10.1021/acschemneuro.0c00437.
  • 36. Nishimura H., Tsuji H., Masuda H. et al. (1997) Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thromb. Haemost., 77(6): 1189–1195. doi.org/10.1055/s-0038-1656136.
  • 37. Yang J., Zheng Y., Gou X. et al. (2020) Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: A systematic review and meta-analysis. Int. J. Infect. Dis., 94: 91–95. doi.org/10.1016/j.ijid.2020.03.017.
  • 38. Zhang J., Dong X., Cao Y. et al. (2020) Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy, 75(7): 1730–1741. doi.org/10.1111/all.14238
  • 39. Henry B.M., Vikse J., Benoit S. et al. (2020) Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta, 507: 167–173. doi.org/10.1016/j.cca.2020.04.027.
  • 40. Oudit,. G.Y., Kassiri Z., Jiang C. et al. (2009) SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. Clin. Invest., 39(7): 618–625. doi.org/10.1111/j.1365-2362.2009.02153.x.
  • 41. Gustafson D., Raju S., Wu R. et al. (2020) Overcoming barriers: The endothelium as a linchpin of coronavirus disease 2019 pathogenesis? Arteriosclerosis, Thrombosis, and Vascular Biology, 40(8): 1818–1829. doi.org/10.1161/ATVBAHA.120.314558.
  • 42. Moccia F., Gerbino A., Lionetti V. et al. (2020) COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. GeroScience, 42(4): 1021–1049. doi.org/10.1007/s11357-020-00198-w.
  • 43. Endemann D.H., Schiffrin E.L. (2004) Endothelial dysfunction. Journal of the American Society of Nephrology, 15(8): 1983–1992. doi.org/10.1097/01.ASN.0000132474.50966.
  • 44. Nimrichter L., Burdick M.M., Aoki K. et al. (2008) E-selectin receptors on human leukocytes. Blood, 112(9): 3744–3752. doi.org/10.1182/blood-2008-04-149641.
  • 45. Page A.V., Liles W.C. (2013) Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence, 4(6): 507–516. doi.org/10.4161/viru.24530.
  • 46. Channappanavar R., Perlman S. (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol., 39(5): 529–539. doi.org/10.1007/s00281-017-0629-x.
  • 47. Chen G., Wu D., Guo W. et al. (2020) Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest., 130(5): 2620–2629. doi.org/10.1172/JCI137244.
  • 48. Moore J.B., June C.H. (2020) Cytokine release syndrome in severe COVID-19. Science, 368(6490): 473–474. science.sciencemag.org/content/368/6490/473.summary.
  • 49. Iba T., Levy J.H., Levi M., Thachil J. (2020) Coagulopathy in COVID‐19. J. Thromb. Haemost., 18(9): 2103–2109. doi.org/10.1111/jth.14975.
  • 50. Baergen R.N., Heller D.S. (2020) Placental Pathology in Covid-19 Positive Mothers: Preliminary Findings. Pediatr. Devel. Pathol., 23(3): 177–180. doi.org/10.1177/1093526620925569.
  • 51. Tyagi N., Roberts A.M., Dean W.L. et al. (2008) Fibrinogen induces endothelial cell permeability. Mol. Cel. Biochem., 307(1–2): 13–22. doi.org/10.1007/s11010-007-9579-2.
  • 52. Lawson C., Wolf S. (2009) ICAM-1 signaling in endothelial cells. Pharmacological Reports, 61(1): 22–32. doi.org/10.1016/S1734-1140(09)70004-0.
  • 53. Lominadze D., Tsakadze N., Sen U. et al. (2005) Fibrinogen and fragment D-induced vascular constriction. Am. J. Physiol. Heart Circul. Physiol., 288(3): H1257–H1264. doi.org/10.1152/ajpheart.00856.2004.
  • 54. Takano S., Kimura S., Ohdama S., Aoki N. (1990) Plasma Thrombomodulin in Health and Diseases. Blood, 76(10): 2024–2029. ashpublications.org/blood/article-pdf/76/10/2024/603283/2024.pdf.
  • 55. Noris M., Benigni A., Remuzzi G. (2020) The case of complement activation in COVID-19 multiorgan impact. Kidney Int., 98(2): 314–322. doi.org/10.1016/j.kint.2020.05.013.
  • 56. Foreman K.E., Vaporciyan A.A., Bonish B.K. et al. (1994) C5a-induced expression of P-selectin in endothelial cells. J. Clin. Invest., 94: 1147–1155. doi.org/10.1172/JCI117430.
  • 57. de Bont C.M., Boelens W.C., Pruijn G.J.M. (2019) NETosis, complement, and coagulation: a triangular relationship. Cel. Molec. Immunol., 16: 19–27. doi.org/10.1038/s41423-018-0024-0.
  • 58. Marchetti M. (2020) COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann. Hematol., 99: 1701–1707. doi.org/10.1007/s00277-020-04138-8.
  • 59. Ritis K., Doumas M., Mastellos D. et al. (2006) A Novel C5a Receptor-Tissue Factor Cross-Talk in Neutrophils Links Innate Immunity to Coagulation Pathways. J. Immunol., 177(7): 4794–4802. doi.org/10.4049/jimmunol.177.7.4794.
  • 60. Platt J.L., Dalmasso A.P., Lindman B.J. et al. (1991) The role of C5a and antibody in the release of heparan sulfate from endothelial cells. Eur. J. Immunol., 21(11): 2887–2890. doi.org/10.1002/eji.1830211135.
  • 61. Magro C., Mulvey J.J., Berlin D. et al. (2020) Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Translat. Res., 220: 1–13. doi.org/10.1016/j.trsl.2020.04.007.
  • 62. Risitano A.M., Mastellos D.C., Huber-Lang M. et al. (2020) Complement as a target in COVID-19? Nature Rev. Immunol., 20: 343–344. doi.org/10.1038/s41577-020-0320-7.
  • 63. Grobler C., Maphumulo S.C., Grobbelaar L.M. et al. (2020) Covid-19: The Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor, P-Selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int. J. Mol. Sci., 21(14): 5168. doi.org/10.3390/ijms21145168.
  • 64. Pawelczyk M., Glabiński A., Kaczorowska B., Baj Z. (2018) sP- and sE-selectin in stroke patients with metabolic disorders. Neurol. Neurochi. Polska, 52: 599–605. doi.org/10.1016/j.pjnns.2018.08.004.
  • 65. Gross P. L. (2017) Soluble P-selectin is the smoke, not the fire. Blood, 130(2): 101–102. doi.org/10.1182/blood-2017-05-786319.
  • 66. Rinaldi L.F., Marazzi G., Marone E.M. (2020) Endovascular Treatment of a Ruptured Pararenal Abdominal Aortic Aneurysm in a Patient With Coronavirus Disease-2019: Suggestions and Case Report. Ann. Vasc. Surg., 66: 18–23. doi.org/10.1016/j.avsg.2020.05.011.
  • 67. Shih M., Swearingen B., Rhee R. (2020) Ruptured Abdominal Aortic Aneurysm Treated with Endovascular Repair in a Patient with Active COVID-19 Infection during the Pandemic. Ann. Vasc. Surg., 66: 14–17. doi.org/10.1016/j.avsg.2020.05.001.
  • 68. Mousavi S., Moradi M., Khorshidahmad T., Motamedi M. (2015) Anti-inflammatory effects of heparin and its derivatives: A systematic review. Adv. Pharmacol. Sci.: 1–14. doi.org/10.1155/2015/507151.
  • 69. Zhu C., Liang Y., Li X. et al. (2019) Unfractionated heparin attenuates histone-mediated cytotoxicity in vitro and prevents intestinal microcirculatory dysfunction in histone-infused rats. J. Trauma Acute Care Surg., 87(3): 614–622. doi.org/10.1097/TA.0000000000002387.
  • 70. Furie B., Furie B.C. (2008) Mechanisms of Thrombus Formation. New Engl. J. Med., 359: 938–949. doi.org/10.1056/NEJMra0801082.
  • 71. Lindemann S., Tolley N.D., Dixon D.A. et al. (2001) Activated platelets mediate inflammatory signaling by regulated interleukin 1β synthesis. J. Cell Biol., 154(3): 485–490. doi.org/10.1083/jcb.200105058.
  • 72. Davì G., Patrono C. (2007) Platelet Activation and Atherothrombosis. New Engl. J. Med., 357(24): 2482–2494. doi.org/10.1056/NEJMra071014.
  • 73. Jayarangaiah A., Kariyanna P.T., Chen X. et al. (2020) COVID-19-Associated Coagulopathy: An Exacerbated Immunothrombosis Response. Clin. Appl. Thromb. Hemost., 26: 1–11. doi.org/10.1177/1076029620943293.
  • 74. Assinger A. (2014) Platelets and infection — An emerging role of platelets in viral infection. Front. Immunol., 5(649): 1–12. doi.org/10.3389/fimmu.2014.00649.
  • 75. Koupenova M., Corkrey H.A., Vitseva O. et al. (2019) The role of platelets in mediating a response to human influenza infection. Nature Commun., 10(1780): 1–18. doi.org/10.1038/s41467-019-09607-x.
  • 76. Chen D., Carpenter A., Abrahams J. et al. (2008) Protease-activated receptor 1 activation is necessary for monocyte chemoattractant protein 1-dependent leukocyte recruitment in vivo. J. Experiment. Med., 205(8): 1739–1746. doi.org/10.1084/jem.20071427.
  • 77. Sugama Y., Tiruppathi C., Janakidevi K. et al. (1992) Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: A mechanism for stabilizing neutrophil adhesion. J. Cell Biol., 119(4): 935–944. doi.org/10.1083/jcb.119.4.935.