Key words: dysmethbolic nephropathy in kids, oxaluria, uraturia, phosphaturia, interleukins.
Published: 14.03.2018
References:
- Dlin V.V., Osmanov I.M. (2013) Dismetabolicheskaya nefropatiya s oksalatno-kaltsievoy kristalluriey. Effekt. farmakoter., 42: 8–16.
- Maidannyk V.H., Burlaka Ye.A., Bahdasarova I.V. ta in. (2013) Klitynna hipoksiia yak mekhanizm poshkodzhennia nyrok pry khronichnomu piielonefryti u ditei. Sovr. pedyatr., 3(51): 132–135.
- Pyrih L.A., Ivanov D.D., Taran O.I. ta in. (2014) Nefrolohiia: Natsional. pidruch. Zaslavskyi O.Iu., Donetsk, 292 s.
- Stepanova N. (2016) Hiperoksaluriia: mekhanizmy formuvannia ta naslidky (www.ukrjnd.com.ua/files/file/archive/n51/Stepanova.pdf).
- Stoeva T.V. (2011) Profilaktika pri nefropatiyah u detey. A.V. Zubarenko, L.G. Kravchenko (red.). Profil. pediatr., Odessa, Chornomoria, s. 139–200.
- Taran O.I. (2013) Uratna nefropatiia ta osnovni pidkhody do yii likuvannia. Pochky, 2(04) (http://www.mif-ua.com/archive/article/36059).
- Almardini R.I., Alfarah M.G., Salaita G.M. (2014) The clinical pattern of primary hyperoxaluria in pediatric patient at Queen Rania Abdulla Children Hospital. Arab. J. Nephrol. Transplant., 7(2): 119–123.
- Anderson C.E., Gilbert R.D., Elia M. (2015) Basal metabolic rate in children with chronic kidney disease and healthy control children. Pediatr. Nephrol., 30(11): 1995–2001.
- Balestracci A., MeniBattaglia L., Toledo I. et al. (2014) Idiopathic hypercalciuria in children with urinary tract infection. Arch. Argent. Pediatr., 112(5): 428–433.
- Belostotsky R., Seboun E., Idelson G.H. et al. (2010) Mutationsin DHDPSL are responsible for primary hyperoxaluria type III. Am. J. Hum. Genet., 87(3): 392–399.
- Bevill M., Kattula A., Cooper C.S. et al. (2017) The Modern Metabolic Stone Evaluation in Children. Urology, 101: 15–20.
- Ceban E., Banov P., Galescu A., Tanase D. (2017) The cellular and humoral immunity assay in patients with complicated urolithiasis. J. Med. Life, 10(1): 80–84.
- Christov M., Jüppner H. (2013) Insights from genetic disorders of phosphate homeostasis. Semin. Nephrol., 33(2): 143–157.
- Dwyer M.E., Krambeck A.E., Bergstralh E.J. et al. (2012) Temporal trends in incidence of kidney stones among children: a 25-year population based study. J. Urol., 188(1): 247–252.
- Fanos V., Noto A., Caboni P. et al. (2014) Urine metabolomic profiling in neonatal nephrology. Clin. Biochem., 47(9): 708–710.
- Figueres M.L., Linglart A., Bienaime F. et al. (2015) Kidney function and influence of sunlight exposure in patients with impaired 24-hydroxylation of vitamin D due to CYP24A1 mutations. Am. J. Kidney Dis., 65(11): 122–126.
- Gambaro G., Croppi E., Coe F. at al. (2016) Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J. Nephrol., 29(6): 715–734.
- Gómez J., Gil-Peña H., Santos F. et al. (2016) Primary distal renal tubular acidosis: novel findings in patients studied by next-generation sequencing. Pediatr. Res., 79(3): 496–501.
- Harambat J., Kunzmann K., Azukaitis K. et al. (2017) Metabolic acidosis is common and associates with disease progression in children with chronic kidney disease — 4C Study Consortium. Kidney Int., 17: 30330–30337.
- Hernandez J.D., Ellison J.S., Lendvay T.S. (2015) Management of Pediatric Nephrolithiasis. Current Trends, Evaluation, and treatment. JAMA Pediatr., 169(10): 964–970.
- Ingulli E.G., Mak R.H. (2014) Growth in children with chronic kidney disease: role of nutrition, growth hormone, dialysis, and steroids. Curr. Opin. Pediatr., 26(2): 187–192.
- Konkoľová J., Chandoga J., Kováčik J. et al. (2017) Severe child form of primary hyperoxaluria type 2 — a case report revealing consequence of GRHPR deficiency on metabolism. BMC Med. Genet., 18(1): 59.
- Kuwahara E., Murakami Y., Okamura T. et al. (2017) Increased childhood BMI is associated with young adult serum uric acid levels: a linkage study from Japan. Pediatr. Res., 81(2): 293–298.
- Lee S.T., Cho H. (2016) Metabolic features and renal outcomes of urolithiasis in children. Ren. Fail., 38(6): 927–932.
- Mulay S.R., Evan A., Anders H.-J. (2014) Nephrol Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Dial. Transplant., 29(3): 507–514.
- Mulay S.R., Kulkarni O.L., Rupanagudi K.V. et al. (2013) Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β Clin. Invest., 123(1): 236–246.
- Pietrement C., Allain-Launay E., Bacchetta J. et al. (2016) Diagnosis and management of chronic kidney disease in children: Guidelines of the French Society of Pediatric Nephrology. Arch. Pediatr., 23(11): 1191–1200.
- Rodieux F., Wilbaux M., van den Anker J.N., Pfister M. (2015) Effect of kidney function on drug kinetics and dosing in neonates, infants, and children. Clin. Pharmacokinet., 54: 1183–1204.
- Sayer J.A. (2017) Progress in understanding the genetics of calcium-containing nephrolithiasis. J. Am. Soc. Nephrol., 28(3): 748–759.
- Taguchi K., Okada A., Hamamoto S. et al. (2016) M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci. Rep., 6: 35167.
- Xiao X., Dong Z., Ye X. et al. (2016) Association between OPN genetic variations and nephrolithiasis risk. Biomed. Rep., 5(3): 321–326.
- Yaseen A., Tresa V., Lanewala A.A. et al. (2017) Acute kidney injury in idiopathic nephrotic syndrome of childhood is a major risk factor for the development of chronic kidney disease. Ren. Fail., 39(1): 323–327.
- Zhang B., Sun Y., Li Y. et al. (2015) Association analysis between genetic variants in interleukin genes among different populations with hyperuricemia in Xinjiang Autonomous Region. J. Clin. Exp. Pathol., 8(10): 13432–13440.