Gait Patterns in Functional Rehabilitation of Patients with Multiple Sclerosis with Balance Impairment and Fatigue Symptoms

February 16, 2026
76
УДК:  616.832-004.2:616.8-009.836:615.825
Specialities :
Resume

Aim: to assess gait patterns at different stages of the rehabilitation pathway in patients with multiple sclerosis (MS) presenting with balance impairment and fatigue symptoms. Materials and methods. A prospective randomized comparative study was conducted involving 180 patients with MS (EDSS 4–5) in a stable neurological condition outside relapse. Participants were stratified according to the predominant Kurtzke functional system: Group I (n=100) — cerebellar system (ataxic phenotype), Group II (n=80) — pyramidal system (paraparetic phenotype). Within each group, participants were randomized into intervention subgroups: standard physical therapy; standard therapy plus a targeted strength–stabilization program with weekly online monitoring; the same strength–stabilization program without online monitoring. The primary follow-up period was 3 months. Balance and postural control were assessed using the Berg Balance Scale, Four Square Step Test (FSST), Timed Up and Go (TUG), and the modified Clinical Test of Sensory Interaction on Balance (mCTSIB). Gait parameters were evaluated by baropodometric assessment (Sigma HL) in static and dynamic conditions, including spatiotemporal and load-distribution measures, center of pressure (CoP) metrics, vector–kinematic characteristics, and fatigue-induced changes. Statistical analysis was performed using nonparametric methods (R 4.3.2). Results. At baseline, the groups were comparable in terms of age, MS duration, and functional impairment. The ataxic phenotype demonstrated lower gait velocity (0.72 m/s), higher step-to-step variability (9.4%), a wider base of support (14.8 cm), and greater lateral CoP deviation (21.4 mm) compared with the pyramidal phenotype (0.86 m/s; 5.1%; 11.6 cm; 12.1 mm, respectively; p<0.001). Fatigue worsened gait parameters in both groups; however, in ataxia it predominantly increased instability (variability and angular deviations), whereas in paraparetic patients it mainly amplified load asymmetry. After 3 months, the most pronounced improvement was observed in the subgroups receiving the strength-stabilization program with online monitoring: increases in gait speed, reductions in variability, and normalization of CoP metrics were more substantial than with standard therapy alone or the program without remote supervision. Conclusions. Gait patterns in MS show distinct phenotype-specific characteristics (ataxic vs pyramidal), and recove­ry trajectories depend on the rehabilitation approach. Baropodomet­ry is a sensitive tool for objective characterization of gait impairments and monitoring intervention effectiveness. A multimodal program incorporating targeted strength-stabilization training with systematic online monitoring provides earlier and more stable normalization of gait parameters and mitigates the negative impact of fatigue on mobility.

References

  • 1. Sabatino J.J.Jr., Cree B.A.C., Hauser S.L. (2025) New Horizons for Multiple Sclerosis Therapy: 2025 and Beyond. Ann. Neurol., 98(2): 317–328. doi: 10.1002/ana.27270.
  • 2. Lopes A.B., Bichuetti D.B., de Souza N.A. et al. (2026) Highly active multiple sclerosis — An important, yet inaccurate concept. Mult. Scler. Relat. Disord., 107: 106966.
  • 3. Jakimovski D., Bittner S., Zivadinov R. et al. (2024) Multiple sclerosis. Lancet, 403(10422): 183–202. doi: 10.1016/S0140-6736(23)01473-3.
  • 4. Decavel P., Sagawa Y.Jr. (2019) Gait quantification in multiple sclerosis: A single-centre experience of systematic evaluation. Neurophysiol. Clin., 49(2): 165–171.
  • 5. Duan H., Jing Y., Li Y. et al. (2023) Rehabilitation treatment of multiple sclerosis. Front. Immunol., 14: 1168821. doi: 10.3389/fimmu.2023.1168821.
  • 6. Regev K., Eren N., Yekutieli Z. et al. (2024) Smartphone-based gait assessment for multiple sclerosis. Mult. Scler. Relat. Disord., 82: 105394. doi: 10.1016/j.msard.2023.105394.
  • 7. Oliva Ramirez A., Keenan A., Kalau O. et al. (2021) Prevalence and burden of multiple sclerosis-related fatigue: a systematic literature review. BMC Neurol., 21(1): 468.
  • 8. DeLuca J. (2024) Fatigue in multiple sclerosis: can we measure it and can we treat it? J. Neurol., 271(9): 6388–6392. doi: 10.1007/s00415-024-12524-9.
  • 9. Eshaghi A., Young A.L., Wijeratne P.A. et al. (2021) Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat. Commun., 12(1): 2078.
  • 10. Bove F., Di Lazzaro G., Petracca M. et al. (2025) An early feasibility study for neurological devices: The ARCTRAN study. Neurol. Sci., 46(10): 5221–5233.
  • 11. Zörner B., Hostettler P., Meyer C. et al. (2022) Prognosis of walking function in multiple sclerosis supported by gait pattern analysis. Mult. Scler. Relat. Disord., 63: 103802.
  • 12. Xiong D., Zhang D., Zhao X., Zhao Y. (2020) Continuous human gait tracking using sEMG signals. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 2020: 3094–3097.
  • 13. Foong Y.C., Merlo D., Gresle M. et al. (2024) The Patient-Determined Disease Steps scale is not interchangeable with the Expanded Disease Status Scale in mild to moderate multiple sclerosis. Eur. J. Neurol., 31(1): e16046. doi: 10.1111/ene.16046.
  • 14. Amatya B., Khan F., Galea M. (2019) Rehabilitation for people with multiple sclerosis: an overview of Cochrane Reviews. Cochrane Database Syst. Rev., 1(1): CD012732.
  • 15. Motl R.W. (2024) Randomized Controlled Trials of Rehabilitation in Multiple Sclerosis: Barriers and Unmet Needs. Mult. Scler., 30(5_suppl.): 36–40.
  • 16. Joa K.L. (2024) Outcome Measurement in Balance Problems: Berg Balance Scale. Ann. Rehabil. Med., 48(2): 103–104. doi: 10.5535/arm.240029.
  • 17. Özkeskin M., Özden F., Ar E., Yüceyar N. (2023) The reliability and validity of the 30-second chair stand test and modified four square step test in persons with multiple sclerosis. Physiother. Theory Pract., 39(10): 2189–2195. doi: 10.1080/09593985.2022.2070811.
  • 18. Pau M., Casu G., Porta M. et al. (2020) Timed Up and Go in men and women with Multiple Sclerosis: Effect of muscular strength. J. Body Mov. Ther., 24(4): 124–130.
  • 19. Young S.N., Norris E.S., Shifflett T.B. et al. (2024) Reliability of the Instrumented Modified Clinical Test of Sensory Interaction on Balance Using a Virtual Balance Device. Int. J. Exerc. Sci., 17(1): 1183–1192. doi: 10.70252/AMXQ4966.
  • 20. Hryb A., Sulyma V., Henyk S., Doroshenko O. (2022) Корекція ходьби при хворобі Паркінсона. terapevtyka.com.ua/index.php/journal/article/view/106.
  • 21. Beauchamp T.L., Childress J.F. (2026) Principles of biomedical ethics. 9th ed. Oxford, Oxford University Press, 528 p.
  • 22. Бабієнко В.В., Мокієнко А.В., Левковська В.Ю. (2022) Біостатистика: навчально-методичний посібник. Прес-кур’єр, Одеса, 180 с.
  • 23. Shim S.R., Kim S.J. (2019) Intervention meta-analysis: application and practice using R software. Epidemiol Health, 41: e2019008. doi: 10.4178/epih.e2019008.
  • 24. Socie M.J., Motl R.W., Pula J.H. et al. (2013) Gait variability and disability in multiple sclerosis. Gait & Posture, 38(1): 51–55. https://doi.org/10.1016/j.gaitpost.2012.10.012.