Features of anesthesia for robotic surgical interventions

January 28, 2026
34
УДК:  616-089.5-06-07-085:004.896
Resume

Robotic surgery is an important component of mo­dern surgery, as it represents a method that reduces periope­rative morbidity and mortality. However, the intraoperative features of the surgical technique — such as pneumoperitoneum, extreme patient positioning on the operating table, and limited access to the patient after robotic docking — require special and meticulous preparation from the anesthesiologist. Purpose: to analyze and summarize data on the principles of anesthetic management of robot-assisted surgical procedures, taking into account the specifics of preoperative preparation, intraoperative management, and postoperative analgesia. Results. It has been established that the safe performance of robot-assisted procedures requires thorough preoperative patient assessment, with consideration of comorbid conditions and the patient’s ability to tolerate pneumoperitoneum and non-physiological body positions. During the intraoperative period, key elements include reliable airway management, control of endotracheal tube cuff pressure, optimization of ventilation using lung-protective strategies, and adequate neuromuscular blockade to ensure stable surgical conditions. Limited access to the patient after docking justifies the need for secured vascular access and standard or extended monitoring in advance. Postoperative analgesia should be based on a multimodal approach, with priority given to opioid-sparing strategies, including the use of regional techniques (TAP block) and basic analgesics. Conclusion. Anesthetic management of robot-assisted surgical procedures is a multicomponent process that requires an individualized approach, taking into account the physiological changes associated with the specific features of robotic surgery, in order to minimize complications and enhance patient safety.

References

  • 1. Grossmann N.C., Aschwanden F.J., Cornelius J. et al. (2025) Impact of patient positioning during surgery on neuropathies after robot-assisted laparoscopic radical prostatectomy: a randomised controlled trial. BJU Int., 135(5): 802–809.
  • 2. Herling S.F., Dreijer B., Wrist Lam G. et al. (2017) Total intravenous anaesthesia versus inhalational anaesthesia for adults undergoing transabdominal robotic assisted laparoscopic surgery. Cochrane Database Syst Rev., 4(4): CD011387.
  • 3. Suryawanshi C.M., Shah B., Khanna S. et al. (2023) Anaesthetic management of robot-assisted laparoscopic surgery. Indian J. Anaesth., 67(1): 117–122.
  • 4. Tameze Y., Low Y.H. (2022) Outpatient robotic surgery: considerations for the anesthesiologist. Adv. Anesth., 40(1): 15–32.
  • 5. Barud M., Turek B., Dąbrowski W. et al. (2025) Anesthesia for robot-assisted surgery: a review. Anaesthesiol. Intensive Ther., 57(1): 99–107.
  • 6. Aceto P., Beretta L., Cariello C. et al. (2019) Joint consensus on anesthesia in urologic and gynecologic robotic surgery: specific issues in management from a task force of the SIAARTI, SIGO, and SIU. Minerva Anestesiol., 85(8): 871–885.
  • 7. Corcione A., Angelini P., Bencini L. et al. (2018) Joint consensus on abdominal robotic surgery and anesthesia from a task force of the SIAARTI and SIC. Minerva Anestesiol., 84(10): 1189–1208.
  • 8. Bruni S., Bogani G., Antonaci A. et al. (2025) Advanced robotic surgery in obese patients with gynecological cancers: tips and tricks from literature to clinical practice. J. Robot Surg., 19(1): 562.
  • 9. Meybohm P., Schmitz-Rixen T., Steinbicker A. et al. (2017) Das Patient-Blood-Management-Konzept: gemeinsame Empfehlung der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin und der Deutschen Gesellschaft für Chirurgie. Chirurg., 88(10): 867–870.
  • 10. Baron D.M., Hochrieser H., Posch M. et al. (2014) Preoperative anaemia is associated with poor clinical outcome in non-cardiac surgery patients. Br. J. Anaesth., 113(3): 416–423.
  • 11. Chae M.S., Lee S., Choi Y.J. et al. (2024) Impact of preoperative gum chewing on postoperative anti-emetic use in robot-assisted laparoscopic surgery for benign ovarian masses: a prospective, single-blinded randomized controlled trial. Medici­na (Kaunas), 60(7): 1135.
  • 12. Scott M.J., Fawcett W.J. (2014) Oral carbohydrate preload drink for major surgery — the first steps from famine to feast. Anaesthesia, 69(12): 1308–1313.
  • 13. Kapur A., Kapur V. (2020) Robotic surgery: anaesthesiologist’s contemplation. Malays J. Med. Sci., 27(3): 143–149.
  • 14. Bisch S., Nelson G., Altman A. (2019) Impact of nutrition on enhanced recovery after surgery (ERAS) in gynecologic oncology. Nutrients, 11(5): 1088.
  • 15. Hernandez-Meza G., Gainsburg D.M. (2023) Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy: an update. Minerva Anestesiol., 89(9): 812–823.
  • 16. Milliken D., Lawrence H., Brown M. et al. (2021) Anaesthetic management for robotic-assisted laparoscopic prostatectomy: the first UK national survey of current practice. J. Robot Surg., 15(3): 335–341.
  • 17. Zhao Y., Zhang S., Liu B. et al. (2020) Clinical efficacy of enhanced recovery after surgery (ERAS) program in patients undergoing radical prostatectomy: a systematic review and meta-analysis. World J. Surg. Oncol., 18(1): 131.
  • 18. Xu Y., Liu A., Chen L. et al. (2020) Enhanced recovery after surgery (ERAS) pathway optimizes outcomes and costs for minimally invasive radical prostatectomy. J. Int. Med. Res., 48(6): 300060520920072.
  • 19. Mittal A.K., Dubey J., Shukla S. et al. (2022) Efficacy of the three-point cuff palpation technique in preventing endobronchial tube migration during positioning in robotic pelvic surgeries. Indian J. Anaesth., 66(12): 818–825.
  • 20. Tsunoda N., Asai T., Okuda Y. (2023) Tracheal tube cuff pressure during anesthesia for robotic-assisted laparoscopic prostatectomy and the efficacy of an automatic cuff pressure controller (SmartCuff): observational studies of 1-sample paired data. J. Anesth., 37(2): 234–241.
  • 21. Rosero E.B., Ozayar E., Eslava-Schmalbach J. et al. (2018) Effects of increasing airway pressures on the pressure of the endotracheal tube cuff during pelvic laparoscopic surgery. Anesth. Analg., 127(1): 120–125.
  • 22. Gupta P., Tandon S., Dhar M. et al. (2022) A prospective observational study on changes in endo-tracheal tube cuff pressure and its correlation with airway pressures during various stages of robotic pelvic surgeries. J. Anaesthesiol. Clin. Pharmacol., 38(2): 270–274.
  • 23. Seo H., Bang J.Y., Oh J. et al. (2015) Effect of tracheal cuff shape on intracuff pressure change during robot-assisted laparoscopic surgery: the tapered-shaped cuff tube versus the cylindrical-shaped cuff tube. J. Laparoendosc. Adv. Surg. Tech. A, 25(9): 724–729.
  • 24. Kishikawa H., Suzuki N., Suzuki Y. et al. (2021) Effect of robot-assisted surgery on anesthetic and perioperative management for minimally invasive radical prostatectomy under combined general and epidural anesthesia. J. Nippon Med. Sch., 88(2): 121–127.
  • 25. Hottenrott S., Schlesinger T., Helmer P. et al. (2020) Do small incisions need only minimal anesthesia? Anesthetic management in laparoscopic and robotic surgery. J. Clin. Med., 9(12): 4058.
  • 26. Yonekura H., Hirate H., Sobue K. (2016) Comparison of anesthetic management and outcomes of robot-assisted vs pure laparoscopic radical prostatectomy. J. Clin. Anesth., 35: 281–286.
  • 27. Doe A., Kumagai M., Tamura Y. et al. (2016) A comparative analysis of the effects of sevoflurane and propofol on cerebral oxygenation during steep Trendelenburg position and pneumoperitoneum for robotic-assisted laparoscopic prostatectomy. J. Anesth., 30(6): 949–955.
  • 28. Robertson T.J., McCulloch T.J., Paleologos M.S. et al. (2022) Effects of sevoflurane versus propofol on cerebral autoregulation during anaesthesia for robot-assisted laparoscopic prostatectomy. Anaesth. Intensive Care, 50(5): 361–367.
  • 29. Matsuoka T., Ishiyama T., Shintani N. et al. (2019) Changes of cerebral regional oxygen saturation during pneumoperitoneum and Trendelenburg position under propofol anesthesia: a prospective observational study. BMC Anesthesiol., 19(1): 72.
  • 30. Ballard C., Jones E., Gauge N. et al. (2012) Optimised anaesthesia to reduce post operative cognitive decline (POCD) in older patients undergoing elective surgery: a randomised controlled trial. PLoS One, 7(6): e37410.
  • 31. Yu J., Hong J.H., Park J.Y. et al. (2018) Propofol attenuates the increase of sonographic optic nerve sheath diameter during robot-assisted laparoscopic prostatectomy: a randomized clinical trial. BMC Anesthesiol., 18(1): 72.
  • 32. Choi E.S., Jeon Y.T., Sohn H.M. et al. (2018) Comparison of the effects of desflurane and total intravenous anesthesia on the optic nerve sheath diameter in robot assisted laparoscopic radical prostatectomy: a randomized controlled trial. Medicine (Baltimore), 97(41): e12772.
  • 33. Bertti R.O.T., Vane L.A., de Moraes J.M.S. et al. (2025) Effect of propofol and sevoflurane anesthesia on the optic nerve sheath: systematic review and meta-analysis. Braz J. Anesthesiol., 75(5): 844646.
  • 34. Sujata N., Tobin R., Tamhankar A. et al. (2019) A randomised trial to compare the increase in intracranial pressure as correlated with the optic nerve sheath diameter during propofol versus sevoflurane-maintained anesthesia in robot-assisted laparoscopic pelvic surgery. J. Robot Surg., 13(2): 267–273.
  • 35. Hwang J.W., Oh A.Y., Hwang D.W. et al. (2013) Does intraocular pressure increase during laparoscopic surgeries? It depends on anesthetic drugs and the surgical position. Surg Laparosc Endosc Percutan Tech., 23(2): 229–232.
  • 36. Park J.H., Lee K.Y., Choi Y.D. et al. (2020) Effect of different general anaesthetics on ventricular repolarisation in robot-assisted laparoscopic prostatectomy. Acta Anaesthesiol. Scand., 64(9): 1243–1252.
  • 37. Haliloglu M., Bilgili B., Ozdemir M. et al. (2017) Low tidal volume positive end-expiratory pressure versus high tidal volume zero-positive end-expiratory pressure and postoperative pulmonary functions in robot-assisted laparoscopic radical prostatectomy. Med Princ Pract., 26(6): 573–578.
  • 38. Chiumello D., Coppola S., Fratti I. et al. (2023) Ventilation strategy during urological and gynaecological robotic-assisted surgery: a narrative review. Br. J. Anaesth., 131(4): 764–774.
  • 39. Kim M.S., Soh S., Kim S.Y. et al. (2018) Comparisons of pressure-controlled ventilation with volume guarantee and volume-controlled 1:1 equal ratio ventilation on oxygenation and respiratory mechanics during robot-assisted laparoscopic radical prostatectomy: a randomized-controlled trial. Int J. Med. Sci., 15(13): 1522–1529.
  • 40. Park J.H., Park I.K., Choi S.H. et al. (2019) Volume-controlled versus dual-controlled ventilation during robot-assisted laparoscopic prostatectomy with steep Trendelenburg position: a randomized-controlled trial. J. Clin. Med., 8(12): 2032.
  • 41. Lee Y.Y., Han J.I., Kang B.K. et al. (2021) Assessment of perioperative atelectasis using lung ultrasonography in patients undergoing pneumoperitoneum surgery in the Trendelenburg position: aspects of differences according to ventilatory mode. J. Korean Med. Sci., 36(50): e334.
  • 42. Hirabayashi G., Ogihara Y., Tsukakoshi S. et al. (2018) Effect of pressure-controlled inverse ratio ventilation on dead space during robot-assisted laparoscopic radical prostatectomy: a randomised crossover study of three different ventilator modes. Eur J. Anaesthesiol., 35(4): 307–314.
  • 43. Veerasamy S., Kumar L., Kartha A. et al. (2022) Comparison of arterial to end-tidal carbon dioxide gradient P(a-ET)CO2 in volume versus pressure controlled ventilation in patients undergoing robotic abdominal surgery in the Trendelenburg position: a randomised controlled study. Indian J. Anaesth., 66(Suppl 5): S243–S249.
  • 44. Cheng M., Ni L., Huang L. et al. (2022) Effect of positive end-expiratory pressure on pulmonary compliance and pulmonary complications in patients undergoing robot-assisted laparoscopic radical prostatectomy: a randomized control trial. BMC Anesthesiol., 22(1): 347.
  • 45. Koo C.H., Park I., Ahn S. et al. (2021) Effect of neuromuscular blockade on intraoperative respiratory mechanics and surgical space conditions during robot-assisted radical prostatectomy: a prospective randomized controlled trial. J. Clin. Med., 10(21): 5090.
  • 46. Pauli H., Eladawy M., Park J. (2019) Anesthesia for robotic thoracic surgery. Ann Cardiothorac Surg., 8(2): 263–268.
  • 47. Messina A., Robba C., Calabrò L. et al. (2021) Association between perioperative fluid administration and postoperative outcomes: a 20-year systematic review and a meta-analysis of randomized goal-directed trials in major visceral/noncardiac surgery. Crit Care, 25(1): 43.
  • 48. Wrzosek A., Jakowicka-Wordliczek J., Zajaczkowska R. et al. (2019) Perioperative restrictive versus goal-directed fluid therapy for adults undergoing major non-cardiac surgery. Cochrane Database Syst Rev., 12(12): CD012767.
  • 49. Rouxel P., Rayon E., Bellocq A.S. et al. (2025) Pain intensity after robotic-assisted urological surgery: the PAIROU study an international prospective cohort study. Anaesth Crit Care Pain Med., 44(4).
  • 50. Covotta M., Claroni C., Costantini M., et al. (2020) The effects of ultrasound-guided transversus abdominis plane block on acute and chronic postsurgical pain after robotic partial nephrectomy: a prospective randomized clinical trial. Pain Med., 21(2): 378–386.
  • 51. Lemoine A., Witdouck A., Beloeil H. et al.; PROSPECT Working Group Of The European Society Of Regional Anaesthesia And Pain Therapy (ESRA). (2021) PROSPECT guidelines update for evidence-based pain management after prostatectomy for cancer. Anaesth Crit Care Pain Med., 40(4): 100922.
  • 52. Shah S.S., Johnson C.D., Howe C.A. et al. (2025) Comparative efficacy of nerve blocks for post-operative analgesia following robot-assisted prostatectomy: a systematic review. Curr Pain Headache Rep., 29(1): 119.
  • 53. Волков О.О., Луценко В.В., Пліс М.О., Павленко М.В., Кріштафор Д.А. (2023) Порівняння TAP-блоку та епідуральної аналгезії в післяопераційному знеболенні при роботизованій радикальній простатектомії. Медичні перспективи, 2: 76–84.
  • 54. Weibel S., Jelting Y., Pace N.L. et al. (2018) Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults. Cochrane Database Syst Rev., 6(6): CD009642.
  • 55. Popa G.M., Abu-Awwad S.A., Abu-Awwad A. et al. (2025) Intravenous lidocaine for postoperative pain and recovery after robotic prostate adenomectomy: a retrospective observational cohort study. Medicina (Kaunas), 61(11): 2045.