- 1. Morris J.L., McEwen P., Letson H.L., Dobson G.P. (2022) Anterior Cruciate Ligament Reconstruction Surgery: Creating a Permissive Healing Phenotype in Military Personnel and Civilians for Faster Recovery. Military medicine, 187(11–12): 1310–1317. doi.org/10.1093/milmed/usac093.
- 2. Musahl V., Karlsson J. (2019) Anterior cruciate ligament tear. N Engl J Med., 380(24): 2341–8.
- 3. Shultz S.J., Schmitz R.J., Cameron K.L. et al. (2019) Anterior cruciate ligament research retreat VIII summary statement: an update on injury risk identification and prevention across the anterior cruciate ligament injury continuum, March 14- 16, Greensboro, NC. J. Athl. Train, 54(9): 970–984.
- 4. Chu C.R. (2022) Can we afford to ignore the biology of joint healing and graft incorporation after ACL reconstruction? J. Orthop. Res., 40(1): 55–64.
- 5. Zbrojkiewicz D., Vertullo C., Grayson J.E. (2018) Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015. Med. J. Aust., 208(8): 354–358.
- 6. Synovec J., Shaw K.A., Antosh I.J. et al. (2019) Current practices in anterior cruciate ligament reconstruction in the U.S. Military: a survey of the Society of Military Orthopaedic Surgeons. Mil. Med., 184(1–2): e249– e255.
- 7. Editorial (2016) The female ACL: Why is it more prone to injury? J. Orthop., 13(2): A1–A4.
- 8. Sanders T.L., Maradit Kremers H., Bryan A.J. et al. (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am. J. Sports Med., 44(6): 1502–1507.
- 9. Mansori A.E., Lording T., Schneider A. et al. (2018) Incidence and patterns of meniscal tears accompanying the anterior cruciate ligament injury: possible local and generalized risk factors. Int. Orthop., 42(9): 2113–2121.
- 10. Tennent D.J., Posner M.A. (2019) The military ACL. J. Knee Surg., 32(2): 118–122.
- 11. Murtha A.S., Johnson A.E., Buckwalter J.A., Rivera J.C. (2017) Total knee arthroplasty for posttraumatic osteoarthritis in military personnel under age 50. Inc. J. Orthop. Res., 35(3): 677–681.
- 12. Aguero A.D., Irrgang J.J., MacGregor A.J. et al. (2022) Sex, military occupation, and rank are associated with risk of anterior cruciate ligament injury in tactical-athletes. BMJ Mil. Health: e002059. doi: 10.1136/bmjmilitary-2021-002059.
- 13. Peebles L.A., O’Brien L.T., Dekker T.J. et al. (2019) The warrior athlete part 2-return to duty in the US military: advancing ACL rehabilitation in the tactical athlete. Sports Med. Arthrosc. Rev., 27(3): e12–e24.
- 14. Parsons J.L., Coen S.E., Bekker S. (2021) Anterior cruciate ligament injury: towards a gendered environmental approach. Br. J. Sports Med., 55(17): 984–990.
- 15. Sutherland K., Clatworthy M., Fulcher M. et al. (2019) Marked increase in the incidence of anterior cruciate ligament reconstructions in young females in New Zealand. ANZ J. Surg., 89(9): 1151–1155.
- 16. Samitier G., Marcano A.I., Alentorn-Geli E. et al. (2015) Failure of anterior cruciate ligament reconstruction. Arch. Bone Jt. Surg., 3(4): 220–240.
- 17. Singh N. (2018) International epidemiology of anterior cruciate ligament injuries. Orthopedic. Res. Online J., 1(5): 94–96.
- 18. Lew A., Haratian A., Fathi A. et al. (2021) Gender differences in anterior cruciate ligament injury: a review of risk factors, mechanisms, and mitigation strategies in the female athlete. J. Orthop. Surg. Sports Med., 4(1): 1–8.
- 19. Antosh I.J., Patzkowski J.C., Racusin A.W. et al. (2018) Return to military duty after anterior cruciate ligament reconstruction. Mil. Med., 183(1–2): e83–e89.
- 20. Rodriguez-Roiz J.M., Caballero M., Ares O. et al. (2015) Return to recreational sports activity after anterior cruciate ligament reconstruction: a one- to six-year follow-up study. Arch. Orthop. Trauma Surg., 135(8): 1117–1122.
- 21. Lai C.C.H., Ardern C.L., Feller J.A., Webster K.E. (2018) Eighty-three per cent of elite athletes return to preinjury sport after anterior cruciate ligament reconstruction: a systematic review with meta-analysis of return to sport rates, graft rupture rates and performance outcomes. Br. J. Sports Med., 52(2): 128–138.
- 22. Rodriguez M.J., Garcia E.J., Dickens J.F. (2019) Primary and posttraumatic knee osteoarthritis in the military. J. Knee Surg., 32(2): 134–137.
- 23. Wang L.J., Zeng N., Yan Z.P. et al. (2020) Post-traumatic osteoarthritis following ACL injury. Arthritis Res. Ther., 22(1): 57.
- 24. Khan T., Alvand A., Prieto-Alhambra D. et al. (2019) ACL and meniscal injuries increase the risk of primary total knee replacement for osteoarthritis: a matched case-control study using the Clinical Practice Research Datalink (CPRD). Br. J. Sports Med., 53(15): 965–968.
- 25. King J.D., Rowland G., Villasante Tezanos A.G. et al. (2020) Joint fluid proteome after anterior cruciate ligament rupture reflects an acute posttraumatic inflammatory and chondrodegenerative state. Cartilage, 11(3): 329–337.
- 26. Remst D.F., Blaney Davidson E.N., Van der Kraan P.M. (2015) Unravelling osteoarthritis-related synovial fibrosis: a step closer to solving joint stiffness. Rheumatol., 54(11): 1954–1963.
- 27. Deckers C., Stephan P., Wever K.E. et al. (2019) The protective effect of anterior cruciate ligament reconstruction on articular cartilage: a systematic review of animal studies. Osteoarthritis Cartilage, 27(2): 219–229.
- 28. Olsson O., Isacsson A., Englund M., Frobell R.B. (2016) Epidemiology of intra- and peri-articular structural injuries in traumatic knee joint hemarthrosis — data from 1145 consecutive knees with subacute MRI. Osteoarthritis Cartilage, 24(11): 1890–1897.
- 29. Jacobs C.A., Hunt E.R., Conley C.E. et al. (2020) Dysregulated inflammatory response related to cartilage degradation after ACL injury. Med. Sci. Sports Exerc., 52(3): 535–541.
- 30. Morris J.L., Letson H.L., Gillman R. et al. (2019) The CNS theory of osteoarthritis: opportunities beyond the joint. Semin. Arthritis Rheum., 49(3): 331–336.
- 31. Dobson G.P., Biros E., Letson H.L., Morris J.L. (2021) Living in a hostile world: inflammation, new drug development and coronavirus. Front. Immunol. (Inflammation), 11: 610131.
- 32. Kim-Wang S.Y., Holt A.G., McGowan A.M. et al. (2021) Immune cell profiles in synovial fluid after anterior cruciate ligament and meniscus injuries. Arthritis Res. Ther., 23(1): 280.
- 33. Kurowska-Stolarska M., Alivernini S. (2017) Synovial tissue macrophages: friend or foe? RMD Open, 3(2): e000527.
- 34. Guo S.Y., Ding Y.J., Li L. et al. (2015) Correlation of CD(4)(+) CD(2)(5)(+) Foxp(3)(+) Treg with the recovery of joint function after total knee replacement in rats with osteoarthritis. Genet. Mol. Res., 14(3): 7290–7296.
- 35. Li Y.-S., Luo W., Zhu S.-A., Lei G.-H. (2017) T cells in osteoarthritis: alterations and beyond. Front. Immunol., 8: 356.
- 36. Li Y., Wang W., Yang F., Xu Y., Feng C., Zhao Y. (2019) The regulatory roles of neutrophils in adaptive immunity. Cell Commun. Signal, 17(1): 147.
- 37. Lattermann C., Proffitt M., Huston L.J. et al. (2016) Multicenter orthopaedic outcome network early anti-inflammatory treatment in patients with acute ACL Tear (MOON-AAA) clinical trial. Orthop. J. Sports Med., 4(Suppl. 7): 2325967116S00189.
- 38. Lattermann C., Conley C.E., Johnson D.L. et al. (2018) Select biomarkers on the day of anterior cruciate ligament reconstruction predict poor patient-reported outcomes at 2-year follow-up: a pilot study. Biomed. Res. Int., 2018: 9387809.
- 39. Duncan S.A., Baganizi D.R., Sahu R. et al. (2017): SOCS proteins as regulators of inflammatory responses induced by bacterial infections: a review. Front. Microbiol., 8: 2431.
- 40. Adelaja A., Hoffmann A. (2019) Signaling crosstalk mechanisms that may fine-tune pathogen-responsive NFkappaB. Front. Immunol., 10: 433.
- 41. Sieker J.T., Proffen B.L., Waller K.A. et al. (2018) Transcriptional profiling of synovium in a porcine model of early post-traumatic osteoarthritis. J. Orthop. Res., 36(8): 2128–2139.
- 42. Wang Y., Zhao X., Lotz M.K. et al. (2015) Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol., 67(8): 2141–2153.
- 43. Letson H.L., Morris J.L., Biros E., Dobson G.P. (2019) ALM fluid therapy leads to 72 hr survival after hemorrhagic shock: a model for studying differential gene expression and extending biological time. J. Trauma Acute Care Surg., 87(3): 606–613.
- 44. Dobson G.P. (2020) Trauma of major surgery: a global problem that is not going away. Int. J. Surg., 81: 47–54.
- 45. Dobson G.P., Morris J.L., Biros E. et al. (2021) Major surgery leads to a proinflammatory phenotype: differential gene expression following a laparotomy. Ann. Med. Surg. (Lond.), 71: 102970.
- 46. Cheuy V.A., Foran J.R.H., Paxton R.J. et al. (2017) Arthrofibrosis associated with total knee arthroplasty. J. Arthroplasty., 32(8): 2604–2611.
- 47. Constantinescu D.S., Campbell M.P., Moatshe G., Vap A.R. (2019) Effects of perioperative nonsteroidal anti-inflammatory drug administration on soft tissue healing: a systematic review of clinical outcomes after sports medicine orthopaedic surgery procedures. Orthop. J. Sports Med., 7(4): 2325967119838873.
- 48. Ge H., Liu C., Shrestha A. et al. (2018) Do nonsteroidal anti-inflammatory drugs affect tissue healing after arthroscopic anterior cruciate ligament reconstruction? Med. Sci. Monit., 24: 6038–6043.
|