Functional changes in bioelectrical activity under prolonged stress in the absence of organic pathology

December 10, 2025
89
УДК:  616.831-073.97:616.89-008.441.13
Specialities :
Resume

The article evaluates the features of electroencephalographic markers of chronic stress and their dynamics after an antistress therapy course. The methods included clinical observation, standard resting-state electroencephalography recording with functional tests (hyperventilation, photic and phonostimulation), and subsequent analysis of α-, θ-, and β-band variability. Both patients demonstrated signs of functional dysregulation within cortico-limbic networks, characterize­d by increased θ-activity in frontocentral regions, reduced occipital α-rhythm, and transient high-amplitude β-bursts in the left frontocentral-temporal area. These patterns reflect hyperactivation of the anterior cingulate cortex and medial prefrontal cortex, as well as disrupted coordination within the default mode network. The findings are consistent with recent literature describing electroencephalographic stress marker­s — elevated frontal θ-power, reduced α-synchronization, and disturbed posterior coherence — as indicators of impaired thalamo-cortical regulation under stress. After completing antistress therapy, both patients showed normalization of electroencephalographic parameters, suggesting the reversibility of functional changes and engagement of neuroplastic adaptation mechanisms. The results highlight electroencephalography as a sensitive tool for detecting stress-related brain dysfunction and monitoring the effectiveness of psychophysiological interventions.

References

  • 1. Thibodeau R., Jorgensen R.S., Kim S. (2006) Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. J. Abnorm. Psychol., 115(4): 715–729.
  • 2. Harmony T. (2013) The functional significance of delta and theta rhythms in cognitive processing. Front. Integr. Neurosci., 7: 83. doi: 10.3389/fnint.2013.00083.
  • 3. Reznik S., Allen J.J.B. (2017) Frontal asymmetry as a mediator and moderator of emotion: An updated review. Psychophysiology, 55(1): e12965.
  • 4. Schutter D.J.L.G., Knyazev G.G. (2017) Cross-frequency coupling of brain oscillations in studying motivation and emotion. Motiv. Emot., 36(1): 46–54.
  • 5. Poza J., Gómez C., Hornero R., Del Pozo F. (2022) Power shift and connectivity changes in healthy aging during resting-state EEG. Aging, 14(8): 3363–3378.
  • 6. Zając-Lamparska L., Zabielska-Mendyk E., Zapała D., Augustynowicz P. (2024) Differences in the lateralization of theta and alpha power during n-back task performance between older and young adults in the context of the HAROLD model. Symmetry, 16(12): 1623. doi: 10.3390/sym16121623.
  • 7. Akil A.M., Watty M., Cserjesi R., Logemann H.N.A. (2024) The relationship between frontal alpha asymmetry and self-report measurements of depression, anxiety, stress, and self-regulation. Appl. Neuropsychol. Adult, 1–13.
  • 8. Gordon E., Williams L.M., Cooper N. et al. (2020) EEG markers of stress. Neurosci. Biobehav. Rev., 117: 192–199. doi: 10.1016/j.neubiorev.2019.12.026.
  • 9. Heller W., Nitscke J.B., Miller G.A. (1997) Cortical asymmetry, anxiety, and emotional processing. J. Abnorm. Psychol., 106(2): 159–172.
  • 10. Knyazev G.G. (2013) EEG correlates of the default mode network. Front. Hum. Neurosci., 7: 434. doi: 10.3389/fnhum.2013.00434.
  • 11. Paulus M.P., Stein M.B. (2006) An insular view of anxiety. Biol. Psychiatry, 60(4): 383–387. doi: 10.1016/j.biopsych.2006.03.042.
  • 12. Etkin A., Wager T.D. (2007) Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry, 164(10): 1476–1488. doi: 10.1176/appi.ajp.2007.07030504.
  • 13. Nikolin S., Boonstra T.W., Loo C.K., Martin D. (2017) Combined effect of prefrontal transcranial direct current stimulation and a working memory task on heart rate variability. PLoS ONE, 12(8): e0181833. doi: 10.1371/journal.pone.0181833.
  • 14. Spironelli C., Fusina F., Angrilli A. (2021) Delta and theta EEG activity during resting state is altered in patients affected by major depression. Eur. Psychiatry, 64(S1): S338–S339. doi: 10.1192/j.eurpsy.2021.908.
  • 15. Mitchell D.J., McNaughton N., Flanagan D., Kirk I.J. (2014) Aging affects medial but not anterior frontal learning-related theta oscillations. Neuroimage, 99: 507–517.
  • 16. Klimesch W. (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev., 29(2–3): 169–195.