The effect of diabetic micro-/macroangiopathy and neuropathy on the diagnostic and treatment tactic of the lower limb vascular pathologies

October 14, 2025
361
УДК:  616.379-008.64:616.13/.14-089.87(075.8)
Specialities :
Resume

Objective: to review the literature on the role of diabetic micro/macroangiopathy and neuropathy in shaping diagnostic strategies and treatment tactics for lower limb arterial and venous pathologies.

Materials and methods. A systematic search of PubMed, Scopus, and Web of Science was performed for publications from 2010 to 2025. Keywords included diabetes mellitus, microangiopathy, macroangiopathy, diabetic neuropathy, peripheral arterial disease, chronic venous insufficiency, varicosis, and deep vein thrombosis. Both original studies and systematic reviews were analyzed, focusing on diagnostic tools, therapeutic options, and patient outcomes.

Results. Diabetic microangiopathy leads to impaired tissue perfusion and atypical ischemia presentation, reducing the reliability of standard diagnostic markers such as the ankle-brachial index. Macroangiopathy accelerates distal arterial atherosclerosis, limiting revascularization options. Venous pathologies are aggravated by diabetic-induced endothelial dysfunction, reduced calf muscle pump activity, and hypercoagulability, increasing the risk of chronic venous insufficiency, varicosis, and DVT. Diabetic neuropathy further complicates the clinical picture by diminishing pain perception and protective sensation, often delaying the recognition of ischemia, infection, or ulceration. It also contributes to abnormal gait mechanics and foot deformities, promoting repetitive trauma and impaired wound healing. Diagnostic strategies require adaptation, incorporating duplex ultrasonography, toe pressure measurement, and advanced imaging modalities. Treatment tactics demand a combined approach: optimized glycemic control, antithrombotic therapy, tailored surgical and endovascular interventions, compression therapy, and multidisciplinary wound care.

Conclusion. Diabetes mellitus markedly complicates the progression of vascular pathologies in the lower extremities, exerting significant impact on both diagnostic accuracy and therapeutic decision-making. Diabetic micro- and macroangiopathy contribute to chronic ischemia, impaired microcirculation, and substantial challenges in achieving effective revascularization. Concurrently, diabetic neuropathy obscures typical clinical signs of ischemia and promotes the formation of trophic ulcers and secondary infections. Standard diagnostic tools — most notably the ankle-brachial index — frequently yield unreliable results due to medial arterial calcification, necessitating the use of complementary non-invasive modalities such as the toe-brachial index, transcutaneous oxygen pressure, duplex ultrasonography, and advanced angiographic imaging. Optimal management requires a multidisciplinary, patient-centered approach incorporating strict glycemic control, pharmacologic prevention of thrombosis and atherosclerosis, appropriate revascularization strategies, compression therapy where indicated, and the use of advanced wound care technologies. Early diagnosis and comprehensive treatment remain critical for reducing the incidence of major amputations and improving clinical outcomes in this high-risk patient population.

References

  • 1. NCD Risk Factor Collaboration (NCD-RisC) (2024) Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. Lancet, 404: 2077–2093.
  • 2. Deng W., Zhao L., Chen Ch. et al. (2024) National burden and risk factors of diabetes mellitus in China from 1990 to 2021: Results from the Global Burden of Disease study 2021. J. Diabetes, 16(10): e70012. doi: 10.1111/1753-0407.70012.
  • 3. Pan C., Cao B., Fang H. et al. (2025) Global burden of diabetes mellitus 1990-2021: epidemiological trends, geospatial disparities, and risk factor dynamics. Front Endocrinol (Lausanne), 16: 1596127. doi: 10.3389/fendo.2025.1596127.
  • 4. Liu Yu., Liu Ch., Liu J. et al. (2025) Global, regional, and national burden of diabetes and its risk factors in women of child-bearing age, from 1990 to 2021. Public Health, 241: 99–106.
  • 5. Chen X., Zhang L., Chen W. (2025) Global, regional, and national burdens of type 1 and type 2 diabetes mellitus in adolescents from 1990 to 2021, with forecasts to 2030: a systematic analysis of the global burden of disease study 2021. BMC Med., 23(1): 48.
  • 6. Goyal Sh., Vanita V. (2025) The Rise of Type 2 Diabetes in Children and Adolescents: An Emerging Pandemic. Diabetes Metab. Res. Rev., 41(1): e70029.
  • 7. Kao K.-T., Sabin M.A. (2016) Type 2 diabetes mellitus in children and adolescents. Aust. Fam. Physician, 45(6): 401–406.
  • 8. Buttermore E., Campanella V., Priefer R. (2021) The increasing trend of Type 2 diabetes in youth: An overview. Diabetes Metab. Syndr., 15(5): 102253.
  • 9. Wang Q.-Y., Mensah E., Li Zh.-Ch. et al. (2025) African regional and national burden of diabetes mellitus and its attributable risk factors from 1990 to 2021: results from the global burden of disease study 2021. Front. Endocrinol. (Lausanne), 16: 1643999.
  • 10. Namazi N., Moghaddam S.S., Esmaeili Sh. et al. (2024) Burden of type 2 diabetes mellitus and its risk factors in North Africa and the Middle East, 1990-2019: findings from the Global Burden of Disease study 2019. BMC Public Health, 24(1): 98.
  • 11. Guariguata L., Sobers N. (2024) Rising diabetes, lagging treatment, and the need for better systems. Lancet, 404(10467): 2026–2028.
  • 12. Factsheet on Ukraine based on STEPS — Diabetes mellitus in adults aged 18–69 years (2022) http://www.who.int/europe/publications/m/item/factsheet-on-ukraine-based-on-steps-diabetes-mellitus-in-adults.
  • 13. http://www.prisma-statement.org.
  • 14. http://www.gradeworkinggroup.org.
  • 15. Xue Ch., Chen K., Gao Z. et al. (2023) Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabol-ic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun. Signal, 21(1): 298.
  • 16. Yin J., Fu X., Luo Y. et al. (2024) A Narrative Review of Diabetic Macroangiopathy: From Molecular Mechanism to Therapeutic Approaches. Diabetes Ther., 15: 585–609.
  • 17. Mauricio D., Gratacòs M., Franch-Nadal J. (2023) Diabetic microvascular disease in non-classical beds: the hidden impact beyond the retina, the kidney, and the peripheral nerves. Cardiovasc. Diabetol., 22(1): 314.
  • 18. Roy B. (2025) Pathophysiological Mechanisms of Diabetes-Induced Macrovascular and Microvascular Complications: The Role of Oxidative Stress. Med. Sci., 13(3): 87.
  • 19. Viigimaa M., Sachinidis A., Toumpourleka M. et al. (2020) Macrovascular Complications of Type 2 Diabetes Mellitus. Curr. Vasc. Pharmacol., 18(2): 110–116.
  • 20. Solanki J.D., Shah A.P., Lalwani N. et al. (2025) Prevalence and concomitance of diabetic peripheral sensory neuropathy and lower limb peripheral arterial disease in type II diabetics and its correlation with obesity. J. Family Med. Prim. Care, 14(2): 687–692.
  • 21. Wen S., Yuan Y., Li Y. et al. (2025) The effects of non-insulin anti-diabetic medications on the diabetic microvascular complications: a systematic review and meta-analysis of randomized clinical trials. BMC Endocr. Disord., 25(1): 179.
  • 22. Kunutsor S.K., Balasubramanian V.G., Zaccardi F. et al. (2024) Glycaemic control and macrovascular and microvascular outcomes: A systematic review and meta-analysis of trials investigating intensive glucose-lowering strategies in people with type 2 diabetes. Diabetes Obes. Metab., 26(6): 2069–2081. doi: 10.1111/dom.15511.
  • 23. Yen F.S., Wei J.C., Shih Y.H. et al. (2023) Impact of individual microvascular disease on the risks of macrovascular complications in type 2 diabetes: a nationwide population-based cohort study. Cardiovasc. Diabetol., 22(1): 109.
  • 24. Mansour A., Mousa M., Abdelmannan D. et al. (2023) Microvascular and macrovascular complications of type 2 diabetes mellitus: Exome wide association analyses. Front Endocrinol. (Lausanne), 14: 1143067.
  • 25. American Diabetes Association 11 (2021) Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2021. Diabetes Care, 44: S151–S167.
  • 26. Romanos M.T., Raspovic A., Perrin B.M. (2010) The reliability of toe systolic pressure and the toe brachial index in patients with diabetes. J. Foot Ankle Res., 3: 31.
  • 27. Suludere M.A., Danesh S.K., Killeen A.L. et al. (2023) Mönckeberg’s Medial Calcific Sclerosis Makes Traditional Arterial Doppler’s Unreliable in High-Risk Patients with Diabetes. Int. J. Low Extrem. Wounds. doi: 10.1177/15347346231191588.
  • 28. Ohtake T., Oka M., Ikee R. et al. (2011) Impact of lower limbs’ arterial calcification on the prevalence and severity of PAD in patients on hemodialysis. J. Vasc. Surg., 53(3): 676–683. doi: 10.1016/j.jvs.2010.09.070.
  • 29. Young M.J., Adams J.E., Anderson G.F. et al. (1993) Medial arterial calcification in the feet of diabetic patients and matched non-diabetic control subjects. Diabetologia, 36(7): 615–621. doi: 10.1007/BF00404070.
  • 30. Tehan P.E., Mills J., Leask S. et al. (2024) Toe-brachial index and toe systolic blood pressure for the diagnosis of peripheral arterial disease. Cochrane Database Syst. Rev., 10(10): CD013783. Published 2024 Oct 30. doi: 10.1002/14651858.CD013783.pub2.
  • 31. Naiyra D., Gohil M.N., Shah H. et al. (2024) Gujarati translation, validity and reliability of Walking Impairment Questionnaire in people with intermittent claudication due to peripheral artery disease. J. Vasc. Nurs., 42(1): 1–9.
  • 32. San Norberto E.M., Revilla Á., Vaquero C. (2021) Mönckeberg’s Disease of the Lower Limb. Vasc. Endovascular. Surg., 55(4): 422–423.
  • 33. Suludere M.A., Killeen A.L., Crisologo P.A. et al. (2023) Mönckeberg’s medial calcific sclerosis in diabetic and non-diabetic foot infections. Wound Repair. Regen., 31(4): 542–546.
  • 34. Chen T., Xiao S., Chen Z. et al. (2024) Risk factors for peripheral artery disease and diabetic peripheral neuropathy among patients with type 2 diabetes. Diabetes Res. Clin. Pract., 207: 111079. doi: 10.1016/j.diabres.2023.111079.
  • 35. Selvarajah D., Kar D., Khunti K. et al. (2019) Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol., 7(12): 938–948. doi: 10.1016/S2213-8587(19)30081-6.
  • 36. Gowtham S., Eashwar A., Thozhanenjan I. et al. (2025) Prevalence of Diabetic Peripheral Neuropathy and Its Associated Risk Factors Among Patients With Type 2 Diabetes Mellitus in the Chengalpattu District of Tamil Nadu. Cureus, 17(5): e83586.
  • 37. Wukich D.K., Raspovic K.M., Suder N.C. (2016) Prevalence of Peripheral Arterial Disease in Patients With Diabetic Charcot Neuroarthropathy. J. Foot Ankle Surg., 55(4): 727–731.
  • 38. Meloni M., Ahluwalia R., Bellia A. et al. (2022) The Neuro-Ischaemic Charcot Foot: Prevalence, Characteristics and Severity of Peripheral Arterial Disease in Acute Charcot Neuro-Arthropathy. J. Clin. Med., 11(21): 6230. doi: 10.3390/jcm11216230.
  • 39. Thiruvoipati T., Kielhorn C.E., Armstrong E.J. (2015) Peripheral artery disease in patients with diabetes: Epidemiology, mechanisms, and outcomes. World J. Diabetes, 6(7): 961–969.
  • 40. Wang W., Ji Q., Ran X. et al. (2023) Prevalence and risk factors of diabetic peripheral neuropathy: A population-based cross-sectional study in China. Diabetes Metab. Res. Rev., 39(8): e3702. doi: 10.1002/dmrr.3702.
  • 41. Liu J., Yuan X., Liu J. et al. (2022) Risk Factors for Diabetic Peripheral Neuropathy, Peripheral Artery Disease, and Foot Deformity Among the Population With Diabetes in Beijing, China: A Multicenter, Cross-Sectional Study. Front. Endocrinol., 13: 824215.
  • 42. Eiken F.L., Pedersen B.L., Bækgaard N., Eiberg J.P. (2019) Diagnostic methods for measurement of peripheral blood flow during exercise in patients with type 2 diabetes and peripheral artery disease: a systematic review. Int. Angiol., 38(1): 62–69.
  • 43. Gazzaruso C., Coppola A., Falcone C. et al. (2013) Transcutaneous oxygen tension as a potential predictor of cardiovascular events in type 2 diabetes: comparison with ankle-brachial index. Diabetes Care, 36(6): 1720–1725. doi: 10.2337/dc12-1401.
  • 44. Fejfarová V., Matuška J., Jude E. et al. (2021) Stimulation TcPO2 Testing Improves Diagnosis of Peripheral Arterial Disease in Patients With Diabetic Foot. Front. Endocrinol., 12: 744195.
  • 45. Rosfors S., Kanni L., Nyström T. (2016) The impact of transcutaneous oxygen pressure measurement in patients with suspected critical lower limb ischemia. Int. Angiol., 35(5): 492–497.
  • 46. Leenstra B., de Kleijn R., Kuppens G. et al. (2020) Photo-Optical Transcutaneous Oxygen Tension Measurement Is of Added Value to Predict Diabetic Foot Ulcer Healing: An Observational Study. J. Clin. Med., 9(10): 3291. doi: 10.3390/jcm9103291.
  • 47. Pardo M., Alcaraz M., Bernal F.L. et al. (2015) Transcutaneous oxygen tension measurements following peripheral transluminal angioplasty procedure has more specificity and sensitivity than ankle brachial index. Br. J. Radiol., 88: 20140571.
  • 48. Tehan P.E., Sebastian M., Barwick A.L., Chuter V.H. (2018) How sensitive and specific is continuous-wave Doppler for detecting peripheral arterial disease in people with and without diabetes? A cross-sectional study. Diab. Vasc. Dis. Res., 15(5): 396–401.
  • 49. Crilly M.A., Williams D.J., Clark H.J. et al. (2012) Gender differences in the extent and timing of the reflected arterial waveform in the presence of coronary artery disease. Eur. J. Prev. Cardiol., 19(3): 358–365. doi: 10.1177/1741826711406486.
  • 50. Shapoval S.D., Savon I.L., Ryazanov D.Y. et al. (2018) Ultrasonic duplex scanning as the standard for diagnostics of periphery arterial diseases of lower limbs in patients with diabetes mellitus in the development of purulent-necrotic complications. Medicni perspektivi, 4(part1): 119–124.
  • 51. Neris R., Kimyaghalam A., Singh K. (2024) Comparison of Duplex Ultrasound and Digital Subtraction Angiography for Assessing Tibial Vessel Disease. Cureus, 16(9): e69327. doi: 10.7759/cureus.69327.
  • 52. Yadav V., Khanduri S., Yadav P. et al. (2020) Diagnostic Accuracy of Color Doppler and Calcium Scoring versus Dual-Energy Computed Tomography Angiography in the Assessment of Peripheral Arterial Diseases of Lower Limb. J. Clin. Imaging Sci., 10: 45. doi: 10.25259/JCIS_77_2020.
  • 53. Zhang S., Wu Y., Guo Y. et al. (2024) Application opportunity of Doppler ultrasound combined with CT angiography in diabetic lower extremity arterial disease and the analysis of the risk factors. Front. Endocrinol., 14: 1257241.
  • 54. Hur K.Y., Jun J.E., Choi Y.J. et al. (2018) Color Doppler Ultrasonography Is a Useful Tool for Diagnosis of Peripheral Artery Disease in Type 2 Diabetes Mellitus Patients with Ankle-Brachial Index 0.91 to 1.40. Diabetes Metab. J., 42(1): 63–73.
  • 55. Dias S.V.M., Flumignan R.L.G., Carvas N., Iared W. (2025) Accuracy of duplex ultrasound in peripheral artery disease: a systematic review and meta-analysis. J. Vasc. Bras., 24: e20240033. doi: 10.1590/1677-5449.202400332.
  • 56. Shabani Varaki E., Gargiulo G.D., Penkala S., Breen P.P. (2018) Peripheral vascular disease assessment in the lower limb: a review of current and emerging non-invasive diagnostic methods. Biomed. Eng. Online, 17(1): 61.
  • 57. Ghirardini F., Martini R. (2024) Current Opinion on Diagnosis of Peripheral Artery Disease in Diabetic Patients. Medicina (Kaunas), 60(7): 1179.
  • 58. Eiberg J.P., Grønvall Rasmussen J.B., Hansen M.A., Schroeder T.V. (2010) Duplex ultrasound scanning of peripheral arterial disease of the lower limb. Eur. J. Vasc. Endovasc. Surg., 40(4): 507–512. doi: 10.1016/j.ejvs.2010.06.002.
  • 59. Sarpe A.K., Flumignan C.D., Nakano L.C. et al. (2023) Duplex ultrasound for surveillance of lower limb revascularisation. Cochrane Database Syst. Rev., 7(7): CD013852.
  • 60. Buschmann E.E., Li L., Brix M. et al. (2018) A novel computer-aided diagnostic approach for detecting peripheral arterial disease in patients with diabetes. PLoS One, 13: e0199374.
  • 61. Suludere M.A., Danesh S.K., Killeen A.L. et al. (2023) Mönckeberg’s Medial Calcific Sclerosis Makes Traditional Arterial Doppler’s Unreliable in High-Risk Patients with Diabetes. Int. J. Low Extrem. Wounds. doi: 10.1177/15347346231191588.
  • 62. Mahé G., Aboyans V., Cosson E. et al. (2024) Challenges and opportunities in the management of type 2 diabetes in patients with lower extremity peripheral artery disease: a tailored diagnosis and treatment review. Cardiovasc. Diabetol., 23: 220.
  • 63. Kaplovitch E., Eikelboom J.W., Dyal L. et al. (2021) Rivaroxaban and Aspirin in Patients With Symptomatic Lower Extremity Peripheral Artery Disease: A Subanalysis of the COMPASS Randomized Clinical Trial. JAMA Cardiol., 6(1): 21–29.
  • 64. Hand K.R., Hale G.M. (2021) Antithrombotic Therapy in Peripheral Artery Disease: Stepping in the Right Direction. Am. J. Cardiovasc. Drugs, 21(5): 523–534.
  • 65. Skeik N., Nowariak M.E., Smith J.E. et al. (2021) Lipid-lowering therapies in peripheral artery disease: A review. Vasc. Med., 26(1): 71–80.
  • 66. Aiello A., Anichini R., Brocco E. et al. (2014) Treatment of peripheral arterial disease in diabetes: a consensus of the Italian Societies of Diabetes (SID, AMD), Radiology (SIRM) and Vascular Endovascular Surgery (SICVE). Nutr. Metab. Cardiovasc. Dis., 24(4): 355–369.
  • 67. Nelson A.J., O’Brien E.C., Kaltenbach L.A. et al. (2022) Use of Lipid-, Blood Pressure-, and Glucose-Lowering Pharmacotherapy in Patients With Type 2 Diabetes and Atherosclerotic Cardiovascular Disease. JAMA Netw Open, 5(2): e2148030.
  • 68. Cha J.J., Cho J.Y., Lim S. et al. (2023) Effect of Cilostazol on Patients With Diabetes Who Underwent Endovascular Treatment for Peripheral Artery Disease. J. Am. Heart Assoc., 12(12): e027334. doi: 10.1161/JAHA.122.027334.
  • 69. Govsyeyev N., Nehler M.R., Hiatt W.R., Bonaca M.P. (2020) Tackling Elevated Risk in PAD: Focus on Antithrombotic and Lipid Therapy for PAD. Curr. Cardiol. Rep., 22: 13.
  • 70. Belur A.D., Shah A.J., Virani S.S. et al. (2022) Role of Lipid-Lowering Therapy in Peripheral Artery Disease. J. Clin. Med., 11(16): 4872. doi: 10.3390/jcm11164872.
  • 71. Wolf S., Spirk D., Forgo G. et al. (2022) Prevalent use of high-intensity statin therapy and LDL-C target attainment among PAD patients undergoing angioplasty. Vasa, 51: 357–364.
  • 72. Murdolo G., Gaggia F., Bianchini E. et al. (2025) Dual pathway inhibition versus antiplatelet therapy for «symptomatic» lower-extremities peripheral artery disease in diabetes mellitus: a systematic review and a meta-analysis of randomized controlled trials for the development of the Italian guidelines for the treatment of diabetic foot syndrome. Acta Diabetol. doi: 10.1007/s00592-025-02562-8.
  • 73. Bonaca M.P., Creager M.A. (2015) Pharmacological treatment and current management of peripheral artery disease. Circ. Res., 116(9): 1579–1598.
  • 74. Lin C., Zhu X., Cai X. et al. (2021) SGLT2 inhibitors and lower limb complications: an updated meta-analysis. Cardiovasc. Diabetol., 20(1): 91.
  • 75. Heyward J., Mansour O., Olson L. et al. (2020) Association between sodium-glucose cotransporter 2 (SGLT2) inhibitors and lower extremity amputation: A systematic review and meta-analysis. PLoS One, 15(6): e0234065.
  • 76. Lee H.F., Chuang C., Li P.R. et al. (2023) Adverse cardiovascular, limb, and renal outcomes in patients with diabetes after peripheral artery disease revascularization treated with sodium glucose cotransporter 2 inhibitors versus dipeptidyl peptidase-4 inhibitors. Diabetol. Metab. Syndr., 15(1): 8. doi: 10.1186/s13098-023-00982-6.
  • 77. Mizutani G., Horii T., Oikawa Y. et al. (2022) Real-world risk of lower-limb amputation associated with sodium-glucose cotransporter 2 inhibitors versus metformin: A propensity score-matched model analysis in Japan. J. Diabetes Investig., 13(12): 2000–2009.
  • 78. Zerovnik S., Kos M., Locatelli I. (2022) Risk of lower extremity amputations in patients with type 2 diabetes using sodium-glucose co-transporter 2 inhibitors. Acta Diabetol., 59(2): 233–241. doi: 10.1007/s00592-021-01805-8.
  • 79. Lee H.F., Chen S.W., Liu J.R. et al. (2020) Major adverse cardiovascular and limb events in patients with diabetes and concomitant peripheral artery disease treated with sodium glucose cotransporter 2 inhibitor versus dipeptidyl peptidase-4 inhibitor. Cardiovasc. Diabetol., 19(1): 160. doi:10.1186/s12933-020-01118-0.
  • 80. Khouri C., Cracowski J.L., Roustit M. (2018) SGLT-2 inhibitors and the risk of lower-limb amputation: Is this a class effect? Diabetes Obes. Metab., 20(6): 1531–1534.
  • 81. Yu O.H.Y., Dell’Aniello S., Shah B.R. et al. (2020) Sodium-Glucose Cotransporter 2 Inhibitors and the Risk of Below-Knee Amputation: A Multicenter Observational Study. Diabetes Care, 43(10): 2444–2452. doi: 10.2337/dc20-0267.
  • 82. Fernández‑Balsells M.M., Sojo-Vega L., Ricart-Engel W. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med., 377(21): 2098.
  • 83. Nalugo M., Harroun N., Li C. et al. (2021) Canagliflozin impedes ischemic hind-limb recovery in the setting of diabetes. Vasc. Med., 26(2): 131–138.
  • 84. Jung H., Cho J., Kim H.K. et al. (2015) Long-term outcomes of infrainguinal bypass surgery for patients with diabetes mellitus and tissue loss. Ann. Surg. Treat Res., 88(1): 35–40. doi: 10.4174/astr.2015.88.1.35.
  • 85. Mohapatra A., Henry J.C., Avgerinos E.D. et al. (2018) Bypass versus endovascular intervention for healing ischemic foot wounds secondary to tibial arterial disease. J. Vasc. Surg., 68(1): 168–175. doi: 10.1016/j.jvs.2017.10.076.
  • 86. Chang C.H., Lin J.W., Hsu J. et al. (2016) Stent revascularization versus bypass surgery for peripheral artery disease in type 2 diabetic patients — an instrumental variable analysis. Sci. Rep., 6: 37177. doi: 10.1038/srep37177.
  • 87. Forsythe R.O., Apelqvist J., Boyko E.J. et al. (2020) Effectiveness of revascularisation of the ulcerated foot in patients with diabetes and peripheral artery disease: A systematic review. Diabetes Metab. Res. Rev., 36 (Suppl. 1): e3279.
  • 88. Wallaert J.B., Nolan B.W., Adams J. et al. (2012) The impact of diabetes on postoperative outcomes following lower-extremity bypass surgery. J. Vasc. Surg., 56(5): 1317–1323. doi: 10.1016/j.jvs.2012.04.011.
  • 89. Qiu Q., Stefanopoulos S., Kaissieh D. et al. (2022) A comparison of revascularization methods for peripheral arterial disease in diabetics: Changing trends in lower extremity revascularization from 2008 to 2014. Vascular, 30(2): 246–254.
  • 90. Misfeld M., Sandner S., Caliskan E. et al. (2024) Outcomes after surgical revascularization in diabetic patients. Interdiscip Cardiovasc. Thorac. Surg., 38(2): ivae014.
  • 91. Sun N.F., Tian A.L., Tian Y.L. et al. (2013) The interventional therapy for diabetic peripheral artery disease. BMC Surg., 13: 32.
  • 92. Mayor J.M., Valentin W., Sharath S. et al. (2018) The impact of foot infection on infrainguinal bypass outcomes in patients with chronic limb-threatening ischemia. J. Vasc. Surg., 68(6): 1841–1847. doi: 10.1016/j.jvs.2018.04.059.
  • 93. Yang L., Rong G.C., Wu Q.N. (2022) Diabetic foot ulcer: Challenges and future. World J. Diabetes, 13(12): 1014–1034. doi: 10.4239/wjd.v13.i12.1014.
  • 94. Mosti G., Cavezzi A., Bastiani L., Partsch H. (2020) Compression Therapy Is Not Contraindicated in Diabetic Patients with Venous or Mixed Leg Ulcer. J. Clin. Med., 9(11): 3709. Published 2020 Nov 19. doi: 10.3390/jcm9113709.
  • 95. Bozkurt A.K., VAN Rijn M.J., Bouskela E. et al. (2023) Enhancing identification and treatment of patients with concomitant chronic venous insufficiency and diabetes mellitus. A modified Delphi study from the CODAC (ChrOnic venous disease and Diabetes Advisory Council) group. Int. Angiol., 42(5): 427–435.
  • 96. Greer N., Foman N.A., MacDonald R. et al. (2013) Advanced wound care therapies for nonhealing diabetic, venous, and arterial ulcers: a systematic review. Ann. Intern. Med., 159(8): 532–542. doi: 10.7326/0003-4819-159-8-201310150-00006.
  • 97. de Castro A.C.F., Barbosa A.V., Lima D.F. et al. (2025) Systematic review and meta-analysis of the impact of diabetes mellitus on chronic venous insufficiency. J. Vasc. Bras., 24: e20250006. doi: 10.1590/1677-5449.202500062.
  • 98. Liu S., He C.Z., Cai Y.T. et al. (2017) Evaluation of negative-pressure wound therapy for patients with diabetic foot ulcers: systematic review and meta-analysis. Ther. Clin. Risk Manag., 13: 533–544. doi: 10.2147/TCRM.S131193.
  • 99. Zhang J., Hu Z.C., Chen D. et al. (2014) Effectiveness and safety of negative-pressure wound therapy for diabetic foot ulcers: a meta-analysis. Plast. Reconstr. Surg., 134(1): 141–151. doi: 10.1097/PRS.0000000000000275.
  • 100. Kucharzewski M., Mieszczański P., Wilemska-Kucharzewska K. et al. (2014) The application of negative pressure wound therapy in the treatment of chronic venous leg ulceration: authors experience. Biomed. Res. Int., 2014: 297230.
  • 101. Ivanova Y., Gramatiuk S., Kryvoruchko I. et al. (2023) Investigating the joint application of negative pressure wound treatment and tissue therapy for chronic wounds in patients with diabetes. J. Med. Life, 16(7): 1098–1104.