The role of chronic inflammation in the development and course of cardiovascular diseases in patients with inflammatory bowel disease

October 13, 2025
250
УДК:  616.34-002-06:616.1-002.2-036.1
Resume

Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, are chronic inflammatory conditions involving primarily the gastrointestinal tract. The global burden of IBD continues to increase. Patients with IBD are at increased risk of cardiovascular diseases (CVD). CVD are of particular concern, ranking as the second leading cause of mortality in this population. Systemic inflammation, together with endothelial dysfunction, calcification, and hypercoagulability, leads to premature atherosclerosis in patients with IBD. The initial examination should include basic laboratory tests and instrumental methods, as well as non-invasive assessment of inflammation using additional biomarkers. Controlling chronic inflammation is key to reducing CVD risk. Adequate treatment of the underlying IBD is essential to achieve and maintain remission. In addition, patients should be screened for atherosclerotic risk factors such as obesity, smoking, arterial hypertension, diabetes, and dyslipidemia. Lifestyle changes such as smoking cessation, dietary modification, and increased physical activity should be considered. It is recommended to intensify the treatment of patients with IBD to minimize inflammatory activity and prevent cardiovascular events in clinical practice.

References

  • 1. Agrawal M., Jess T. (2022) Implications of the changing epidemiology of inflammatory bowel disease in a changing world. United Eur. Gastroenterol. J., 10(10): 1113–1120. doi: 10.1002/ueg2.12317.
  • 2. Moran G.W., Gordon M., Sinopolou V. et al. (2025). British Society of Gastroenterology guidelines on inflammatory bowel disease in adults: 2025. Gut, 74(Suppl. 2): s1–s101. doi: 10.1136/gutjnl-2024-334395.
  • 3. Clough J., Colwill M., Poullis A. et al. (2024) Biomarkers in inflammatory bowel disease: a practical guide. Therap. Adv. Gastroenterol., 17: 17562848241251600.
  • 4. Hirten R.P., Danieletto M., Sanchez-Mayoret M. et al. (2025) Physiological Data Collected From Wearable Devices Identify and Predict Inflammatory Bowel Disease Flares. Gastroenterology, 168(5): 939–951.e5. doi: 10.1053/j.gastro.2024.12.024.
  • 5. Li J., Xu M., Qian W. et al. (2023) Clinical value of fecal calprotectin for evaluating disease activity in patients with Crohn’s disease. Front. Physiol., 14: 1186665.
  • 6. Ding N.S., Lee T., Bettenworth D. et al. (2021) Assessing aCCess to Investigations in Inflammatory Bowel Disease (ACCID): results from an international survey. Eur. J. Gastroenterol. Hepatol., 33(1S Suppl. 1): e837–e842.
  • 7. Cainzos-Achirica M., Glassner K., Zawahir H.S. et al. (2020) Inflammatory Bowel Disease and Atherosclerotic Cardiovascular Disease: JACC Review Topic of the Week. J. Am. Coll. Cardiol., 76(24): 2895–2905. doi: 10.1016/j.jacc.2020.10.027.
  • 8. Diez-Martin E., Hernandez-Suarez L., Muñoz-Villafranca C. et al. (2024) Inflammatory Bowel Disease: A Comprehensive Analysis of Molecular Bases, Predictive Biomarkers, Diagnostic Methods, and Therapeutic Options. Int. J. Mol. Sci., 25(13): 7062. doi: 10.3390/ijms25137062.
  • 9. Pahwa R., Goyal A., Jialal I. (2024) Chronic Inflammation. In: StatPearls. Treasure Island (FL): StatPearls Publ.
  • 10. D’Ascenzo F., Bruno F., Iannaccone M. et al. (2023) Patients with inflammatory bowel disease are at increased risk of atherothrombotic disease: A systematic review with meta-analysis. Int. J. Cardiol., 378: 96–104.
  • 11. Kong P., Cui Z.Y., Huang X.F. et al. (2022) Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target Ther., 7(1):131.
  • 12. Cicalese S.M., da Silva J.F., Priviero F. et al. (2021) Vascular stress signaling in hypertension. Circ. Res., 128(7): 969–992. doi: 10.1161/circresaha.121.318053.
  • 13. Harrison D.G., Coffman T.M., Wilcox C.S. (2021) Pathophysiology of Hypertension: The Mosaic Theory and Beyond. Circ. Res., 128(7): 847–863.
  • 14. Zanoli L., Mikhailidis D.P., Bruno R.M. et al. (2020) Aortic stiffening is an extraintestinal manifestation of inflammatory bowel disease: review of the literature and expert panel statement. Angiology, 71(8): 689–697. doi: 10.1177/0003319720918509.
  • 15. Zhou B., Perel P., Mensah G.A., Ezzati M. (2021) Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol., 18(11): 785–802. doi: 10.1038/s41569-021-00559-8.
  • 16. Agita A., Alsagaff M.T. (2017) Inflammation, immunity, and hypertension. Acta Med. Indones., 49(2): 158–165.
  • 17. Rizzoni D., De Ciuceis C., Szczepaniak P. et al. (2022) Immune System and Microvascular Remodeling in Humans. Hypertension, 79(4): 691–705.
  • 18. Zhang Z., Zhao L., Zhou X. et al. (2023) Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol., 10: 13: 1098725. doi: 10.3389/fimmu.2022.1098725.
  • 19. Rogler G., Singh A., Kavanaugh A., Rubin D.T. (2021) Extraintestinal Manifestations of Inflammatory Bowel Disease: Current Concepts, Treatment, and Implications for Disease Management. Gastroenterology, 161(4): 1118–1132.
  • 20. He J., Zhang S., Qiu Y. et al. (2023) Ulcerative colitis increases risk of hypertension in a UK biobank cohort study. United Eur. Gastroenterol. J., 11(1): 19–30.
  • 21. Annese V., Annunziata M.L., Petroni G.A. et al. (2025) Cardiovascular Complications Are Increased in Inflammatory Bowel Disease: A Path Toward Achievement of a Personalized Risk Estimation. J. Pers. Med., 15(9): 418.
  • 22. Aniwan S., Pardi D.S., Tremaine W.J., Loftus Jr.E.V. (2018) Increased Risk of Acute Myocardial Infarction and Heart Failure in Patients With Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol., 16(10): 1607–1615.
  • 23. Sinh P., Cross R.K. (2024) Cardiovascular Comorbidities and Inflammatory Bowel Disease: Causes and Consequences. Gastroenterol. Hepatol., 20(4): 204–215.
  • 24. Fang L., Gao H., Gao X. et al. (2022) Risks of Cardiovascular Events in Patients With Inflammatory Bowel Disease in China: A Retrospective Multicenter Cohort Study. Inflamm. Bowel Dis., 28(Suppl. 2): S52–S58. doi: 10.1093/ibd/izab326.
  • 25. Lee M.T., Mahtta D., Chen L. et al. (2021) Premature Atherosclerotic Cardiovascular Disease Risk Among Patients with Inflammatory Bowel Disease. Am. J. Med., 134(8): 1047–1051. doi: 10.1016/j.amjmed.2021.02.029.
  • 26. Soh H., Im J.P., Han K. et al. (2020) Crohn’s disease and ulcerative colitis are associated with different lipid profile disorders: a nationwide population-based study. Aliment. Pharmacol. Ther., 51(4): 446–456. doi: 10.1111/apt.15562.
  • 27. Aarestrup J., Jess T., Kobylecki C.J. et al. (2019) Cardiovascular Risk Profile Among Patients With Inflammatory Bowel Disease: A Population-based Study of More Than 100 000 Individuals. J. Crohns Colitis, 13(3): 319–323. doi: 10.1093/ecco-jcc/jjy164.
  • 28. Chen H., Li W., Hu J. et al. (2023) Association of serum lipids with inflammatory bowel disease: a systematic review and meta-analysis. Front. Med. (Lausanne), 10: 1198988. doi: 10.3389/fmed.2023.1198988.
  • 29. Card T.R., Zittan E., Nguyen G.C., Grainge M.J. (2021) Disease Activity in Inflammatory Bowel Disease Is Associated With Arterial Vascular Disease. Inflamm. Bowel Dis., 27(5): 629–638. doi: 10.1093/ibd/izaa156.
  • 30. Li S., Gao Y., Ma K. et al. (2021) Lipid-related protein NECTIN2 is an important marker in the progression of carotid atherosclerosis: An intersection of clinical and basic studies. J. Transl. Int. Med., 9(4): 294–306. doi: 10.2478/jtim-2021-0044.
  • 31. Gravina A.G., Dallio M., Masarone M. et al. (2018) Vascular Endothelial Dysfunction in Inflammatory Bowel Diseases: Pharmacological and Nonpharmacological Targets. Oxid. Med. Cell Longev., 12: 2568569. doi: 10.1155/2018/2568569.
  • 32. Galluzzo S., Patti G., Dicuonzo G. et al. (2011) Association between NOD2/CARD15 polymorphisms and coronary artery disease: a case-control study. Hum. Immunol., 72(8): 636–640. doi: 10.1016/j.humimm.2011.04.005.
  • 33. Meda A., Fredrick F., Rathod U. et al. (2023) Cardiovascular Manifestations in Inflammatory Bowel Disease. Curr. Cardiol. Rev., 20(1): E241123223802.
  • 34. Hansson G.K. (2017) Inflammation and Atherosclerosis: The End of a Controversy. Circulation, 136(20): 1875–1877. doi: 10.1161/circulationaha.117.030484.
  • 35. Sleutjes J.A.M., Roeters van Lennep J.E., Janneke van der Woude C., de Vries A.C. (2021) Thromboembolic and atherosclerotic cardiovascular events in inflammatory bowel disease: epidemiology, pathogenesis and clinical management. Therap. Adv. Gastroenterol., 28: 17562848211032126.
  • 36. Gordon H., Burisch J., Ellul P. et al. (2024) ECCO Guidelines on Extraintestinal Manifestations in Inflammatory Bowel Disease. J. Crohns Colitis, 18(1): 1–37.
  • 37. Gabbiadini R., Dal Buono A., Mastrorocco E. et al. (2023) Atherosclerotic cardiovascular diseases in inflammatory bowel diseases: to the heart of the issue. Front. Cardiovasc. Med., 10: 1143293. doi: 10.3389/fcvm.2023.1143293.
  • 38. Olivera P.A., Zuily S., Kotze P.G. et al. (2021) International consensus on the prevention of venous and arterial thrombotic events in patients with inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 18: 857–873.
  • 39. Rungoe C., Basit S., Ranthe M.F. et al. (2013) Risk of ischaemic heart disease in patients with inflammatory bowel disease: a nationwide danish cohort study. Gut, 62: 689–694. doi: 10.1136/gutjnl-2012-303285.
  • 40. Massironi S., Mulinacci G., Gallo C. et al. (2023) The oft-overlooked cardiovascular complications of inflammatory bowel disease. Expert Rev. Clin. Immunol., 8: 1–17.
  • 41. Lewis J.D., Scott F.I., Brensinger C.M. et al. (2018) Increased mortality rates with prolonged corticosteroid therapy when compared with antitumor necrosis factor-α-directed therapy for inflammatory bowel disease. Am. J. Gastroenterol., 113: 405–417. doi: 10.1038/ajg.2017.479.
  • 42. Voloshyna I., Seshadri S., Anwar K. et al. (2014) Infliximab reverses suppression of cholesterol efflux proteins by TNF-α: a possible mechanism for modulation of atherogenesis. Biomed. Res. Int., 2014: 312647. doi: 10.1155/2014/312647.
  • 43. Morton A.C., Rothman A.M.K., Greenwood J.P. et al. (2015) The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. Eur. Heart J., 36: 377–384.