- 1. Archie S.R., Al Shoyaib A., Cucullo L. (2021) Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics, 13(11): 1779. doi.org/10.3390/pharmaceutics13111779.
- 2. Caprio F.Z., Maas M.B., Rosenberg N.F. et al. (2013) Leukoaraiosis on magnetic resonance imaging correlates with worse outcomes after spontaneous intracerebral hemorrhage. Stroke, 44(3): 642–646. doi.org/10.1161/STROKEAHA.112.676890.
- 3. Coria F., Rubio I. (1996) Cerebral amyloid angiopathies. Neuropathology and Applied Neurobiology, 22(3): 216–227. doi.org/10.1111/j.1365-2990.1996.tb00897.x
- 4. De Silva T.M., Faraci F.M. (2020) Contributions of Aging to Cerebral Small Vessel Disease. Annual review of physiology, 82: 275–295. doi.org/10.1146/annurev-physiol-021119-034338.
- 5. De Silva T.M., Miller A.A. (2016) Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy? Frontiers in pharmacology, 7: 61. doi.org/10.3389/fphar.2016.00061.
- 6. Gao Y., Li D., Lin J. et al. (2022) Cerebral small vessel disease: Pathological mechanisms and potential therapeutic targets. Frontiers in aging neuroscience, 14: 961661. doi.org/10.3389/fnagi.2022.961661.
- 7. Greenberg S.M., Bacskai B.J., Hernandez-Guillamon M. et al. (2020) Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nature reviews. Neurology, 16(1): 30–42. doi.org/10.1038/s41582-019-0281-2.
- 8. Kwon S.M., Choi K.S., Yi H.J. et al. (2018) Impact of brain atrophy on 90-day functional outcome after moderate-volume basal ganglia hemorrhage. Scientific reports, 8(1): 4819. doi.org/10.1038/s41598-018-22916-3.
- 9. Litak J., Mazurek M., Kulesza B. et al. (2020) Cerebral Small Vessel Disease. Int. J. Mol. Sci., 21(24): 9729. doi.org/10.3390/ijms21249729.
- 10. Quick S., Moss J., Rajani R.M., Williams A. (2021) A Vessel for Change: Endothelial Dysfunction in Cerebral Small Vessel Disease. Trends in neurosciences, 44(4): 289–305. doi.org/10.1016/j.tins.2020.11.003.
- 11. Rajani R.M., Quick S., Ruigrok S.R. et al. (2018) Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci. Translational Med., 10(448): eaam9507. doi.org/10.1126/scitranslmed.aam9507.
- 12. Ryu W.S., Woo S.H., Schellingerhout D. et al. (2017) Stroke outcomes are worse with larger leukoaraiosis volumes. Brain: a journal of neurology, 140(1): 158–170. doi.org/10.1093/brain/aww259.
- 13. Singh B., Lavezo J., Gavito-Higueroa J. et al. (2022) Updated Outlook of Cerebral Amyloid Angiopathy and Inflammatory Subtypes: Pathophysiology, Clinical Manifestations, Diagnosis and Management. J. Alzheimer’s disease reports, 6(1): 627–639. doi.org/10.3233/ADR-220055.
- 14. Smith E.E., Eichler F. (2006) Cerebral amyloid angiopathy and lobar intracerebral hemorrhage. Arch. Neurol., 63(1): 148–151. doi.org/10.1001/archneur.63.1.148.
- 15. Uekawa K., Hattori Y., Ahn S.J. et al. (2023) Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress. Molecular neurodegeneration, 18(1): 73. doi.org/10.1186/s13024-023-00660-1.
- 16. Viswanathan A., Chabriat H. (2006) Cerebral microhemorrhage. Stroke, 37(2): 550–555. doi.org/10.1161/01.STR.0000199847.96188.12.
- 17. Wardlaw J.M., Smith C., Dichgans M. (2019) Small vessel disease: mechanisms and clinical implications. The Lancet. Neurol., 18(7): 684–696. doi.org/10.1016/S1474-4422(19)30079-1.
- 18. Zhang A.J., Yu X.J., Wang M. (2010) The clinical manifestations and pathophysiology of cerebral small vessel disease. Neurosci. bull., 26(3): 257–264. doi.org/10.1007/s12264-010-1210-y.
|