Features of Using Polymethylmethacrylate-Based Cement in the Treatment of Gunshot Fractures with Bone Defects

April 30, 2025
185
УДК:  616.71-001.5-089.843:678.744
Resume

The article is devoted to the features of treating gunshot fractures with bone defects using bone cement based on polymethylmethacrylate (PMMA) and the possibilities for improving the biological properties of the polymer. Based on the analysis of modern literature, we have identified a wide range of applications for PMMA bone cement, considering its biocompatibility, bioinertness, ease of use, high biomechanical strength, and durability. The main modification options for PMMA bone cements that aim to enhance bioactivity and osteointegrative potential have been established. To improve the quality of PMMA cement, bioactive substances are added to its composition, including organic biopolymers such as bone morphogenetic proteins, mineralized collagen, chitosan, and curcumin, as well as inorganic compounds — bioceramics (hydroxyapatite, tricalcium phosphate, aluminum oxide, zirconium dioxide, titanium oxide, calcium aluminates, bioactive glass, and glass-ceramics), graphene oxide, microplates of aluminum-magnesium layered double hydroxides, carboxylated multi-walled carbon nanotubes, and others.

References

  • 1. Король С.О. (2018) Кісткова пластика в системі спеціалізованого лікування поранених з бойовими травмами кінцівок Травма, 19(1): 20–26.
  • 2. Родіонов А.В., Носівець Д.С., Бець В.Г. та ін. (2024) Хірургічне лікування дефектів кісток кінцівок унаслідок вогнепальних поранень Ортопедія, травматологія та протезування, 4: 76–81. DOI: dx.doi.org/10.15674/0030-59872024476-81.
  • 3. Richter R.F., Vater C., Korn M. et al. (2023) Treatment of critical bone defects using calcium phosphate cement and mesoporous bioactive glass providing spatiotemporal drug delivery. Bioactive materials, 28: 402–419. doi.org/10.1016/j.bioactmat.2023.06.001.
  • 4. Wang W., Yeung, K.W.K. (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive materials, 2(4): 224–247.
  • 5. Wei S., Ma J.X., Xu L. et al. (2020) Biodegradable materials for bone defect repair. Military Med. Res., 7: 54. doi.org/10.1186/s40779-020-00280-6.
  • 6. Xia Y., Wang H., Li Y., Fu C. (2022) Engineered bone cement trigger bone defect regeneration. Front. Mater., 9: 929618. doi: 10.3389/fmats.2022.929618.
  • 7. Singhatanadgit W., Sungkhaphan P., Thavornyutikarn B. et al. (2024) In Vitro Osteo-Immunological Responses of Bioactive Calcium Phosphate-Containing Urethane Dimethacrylate-Based Composites: A Potential Alternative to Poly(methyl methacrylate) Bone Cement. ACS Materials Au, 4(6): 612–627.
  • 8. Wang Q., Dong J.F., Fang X., Chen Y. (2022) Application and modification of bone cement in vertebroplasty: A literature review. Jt. Dis. Relat. Surg., 33(2): 467–478.
  • 9. Gong Y., Zhang B., Yan L. (2022) Preliminary Review of Modified Polymethyl Methacrylate and Calcium-Based Bone Cement for Improving Properties in Osteoporotic Vertebral Compression Fractures. Front. Mater, 9: 912713.
  • 10. Ardelean A.I., Mârza S.M., Marica R. et al. (2024) Evaluation of Biocomposite Cements for Bone Defect Repair in Rat Models. Life, 14(9): 1097. doi.org/10.3390/life14091097.
  • 11. Liu D., Cui C., Chen W. et al. (2023) Biodegradable Cements for Bone Regeneration. J. Funct. Biomater., 14(3): 134. doi.org/10.3390/jfb14030134.
  • 12. Forte M.A., Silva R.M., Tavares C.J., Silva R.F. (2021) Is poly(methyl methacrylate) (PMMA) a suitable substrate for ALD? Polym. (Basel), 13(8): 1346.
  • 13. Cui X., Huang C., Zhang M. et al. (2017) Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass. J. R. Soc. Interface, 14(131): 20161057.
  • 14. Ramanathan S., Lin Y.-C., Thirumurugan S. et al. (2024) Poly(methyl methacrylate) in Orthopedics: Strategies, Challenges, and Prospects in Bone Tissue Engineering. Polymers, 16(3): 367. doi.org/10.3390/polym16030367.
  • 15. Boschetto F., Honma T., Adachi T. et al. (2023) Development and evaluation of osteogenic PMMA bone cement composite incorporating curcumin for bone repairing. Materials Today Chemistry, 27(23): 101307. doi.org/10.1016/j.mtchem.2022.101307.
  • 16. Берладір Х.В., Говорун Т.П., Олешко О.М. (2022) Біомедичні матеріали: від історії до сьогодення. Суми: Сумський державний університет, 223 c.
  • 17. Filip N., Radu I., Veliceasa B. et al. (2022) Biomaterials in Orthopedic Devices: Current Issues and Future Perspectives. Coatings, 12(10): 1544. doi.org/10.3390/coatings12101544.
  • 18. Belkheir M., Alami M., Mokaddem A. et al. (2022) An Investigation on the Effect of Humidity on the Mechanical Properties of Composite Materials Based on Polymethyl Methacrylate Polymer Optical Fibers (POFs). Fibers Polym., 23: 2897–2906. doi.org/10.1007/s12221-022-4164-6.
  • 19. Latif F.A., Zailani N.A.M., Al Shukaili Z.S.M. et al. (2022) Review of Poly (Methyl Methacrylate) Based Polymer Electrolytes in Solid-State Supercapacitors. Int. J. Electrochem. Sci., 17: 22013. doi.org/10.20964/2022.01.44.
  • 20. Bistolfi A., Ferracini R., Albanese C. et al. (2019) PMMA-Based Bone Cements and the Problem of Joint Arthroplasty Infections: Status and New Perspectives. Materials (Basel), 12(23): 4002. doi: 10.3390/ma12234002.
  • 21. Soleymani Eil Bakhtiari S., Bakhsheshi-Rad H.R., Karbasi S. et al. (2020) Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties. Polymers (Basel), 12(7): 1469. doi: 10.3390/polym12071469.
  • 22. Mengran Wang M., Zhang L., Fu Z. et al. (2021) Selections of Bone Cement Viscosity and Volume in Percutaneous Vertebroplasty: A Retrospective Cohort Study. World Neurosurg, 150: e218–e227. doi: 10.1016/j.wneu.2021.02.133.
  • 23. Al-Husinat L., Jouryyeh B., Al Sharie S. et al. (2023) Bone Cement and Its Anesthetic Complications: A Narrative Review. J. Clin. Med., 12(6): 2105. doi: 10.3390/jcm12062105.
  • 24. Saruta J., Ozawa R., Hamajima K. et al. (2021) Prolonged post-polymerization biocompatibility of polymethylmethacrylate-tri-n-butylborane (PMMA-TBB) bone cement. Mater. (Basel), 14(5): 1289. doi: 10.3390/ma14051289.
  • 25. Paz E., Ballesteros Y., Abenojar J. et al. (2019) Graphene oxide and graphene reinforced PMMA bone cements: Evaluation of thermal properties and biocompatibility. Mater. (Basel), 12(19): 3146. doi: 10.3390/ma12193146.
  • 26. Phakatkar A.H., Shirdar M.R., Qi M.L. et al. (2020) Novel PMMA bone cement nanocomposites containing magnesium phosphate nanosheets and hydroxyapatite nanofibers. Mater. Sci. Eng. C. Mater. Biol. Appl., 109: 110497. doi: 10.1016/j.msec.2019.110497.
  • 27. Li W.H., Hao W., Wu C. et al. (2020) Injectable and bioactive bone cement with moderate setting time and temperature using borosilicate bio-glass-incorporated magnesium phosphate. Biomed. Mat., 15(4): 045015. doi: 10.1088/1748-605x/ab633f.
  • 28. Wang Y., Shen S., Hu T. et al. (2021) Layered Double Hydroxide Modified Bone Cement Promoting Osseointegration via Multiple Osteogenic Signal Pathways. ACS Nano., 15: 9732–9745. doi: 10.1021/acsnano.1c00461.
  • 29. Wekwejt M., Chen S., Kaczmarek-Szczepańska B. et al. (2021) Nanosilver-Loaded PMMA Bone Cement Doped with Different Bioactive Glasses-Evaluation of Cytocompatibility, Antibacterial Activity, and Mechanical Properties. Biomater. Sci., 9: 3112–3126. DOI: doi.org/10.1039/D1BM00079A.
  • 30. Wong S.K., Wong Y.H., Chin K.-Y., Ima-Nirwana S. (2021) A Review on the Enhancement of Calcium Phosphate Cement with Biological Materials in Bone Defect Healing. Polymers., 13(18): 3075. doi.org/10.3390/polym13183075.
  • 31. Shen H., Zhi Y., Zhu F. et al. (2021) Experimental and clinical evaluation of BMP2-CPC graft versus deproteinized bovine bone graft for guided bone regeneration: A pilot study. Dent. Mat. J., 40(1): 191–201. doi: 10.4012/dmj.2019-437.
  • 32. De Witte T.M., Wagner A.M., Fratila-Apachitei L.E. et al. (2020) Degradable poly(methyl methacrylate)-co-methacrylic acid nanoparticles for controlled delivery of growth factors for bone regeneration. Tissue Eng. Part A., 26(23–24): 1226-1242. doi: 10.1089/ten.tea.2020.0010.
  • 33. Zhu J., Zhang K., Luo K. et al. (2019) Mineralized collagen modified polymethyl methacrylate bone cement for osteoporotic compression vertebral fracture at 1-year follow-up. Spine 1976, 44(12): 827–838. doi: 10.1097/brs.0000000000002971.
  • 34. De Mori A., Di Gregorio E., Kao A.P. et al. (2019) Antibacterial PMMA Composite Cements with Tunable Thermal and Mechanical Properties. ACS Omega., 4: 19664–19675. doi: 10.1021/acsomega.9b02290.
  • 35. Avinashi S.K., Shweta, Bohra B. et al. (2024) Fabrication of Novel 3-D Nanocomposites of HAp–TiC–h-BN–ZrO2: Enhanced Mechanical Performances and In Vivo Toxicity Study for Biomedical Applications. ACS Biomaterials Science & Engineering, 10(4): 2116-2132. DOI: 10.1021/acsbiomaterials.3c01478.
  • 36. Zapata M.E.V., Ruiz Rojas L.M., Mina Hernández J.H. et al. (2020) Acrylic Bone Cements Modified with Graphene Oxide: Mechanical, Physical, and Antibacterial Properties. Polymers, 12: 1773. doi: 10.3390/polym12081773.
  • 37. Tavakoli M., Bakhtiari S.S.E., Karbasi S. (2020) Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation. Int. J. Biol. Macromol., 149: 783–793. doi: 10.1016/j.ijbiomac.2020.01.300.
  • 38. Zhang X., Kang T., Liang P. et al. (2018) Biological activity of an injectable biphasic calcium phosphate/PMMA bone cement for induced osteogensis in rabbit model. Macromol. Biosci., 18(3): 1700331. doi: 10.1002/mabi.201700331.
  • 39. Li C., Sun J., Shi K. et al. (2020) Preparation and evaluation of osteogenic nano-MgO/PMMA bone cement for bone healing in a rat critical size calvarial defect. J. Mat. Chem. B., 8(21): 4575–4586. doi: 10.1039/d0tb00074d.
  • 40. Wang C., Yu B., Fan Y. et al. (2019) Incorporation of multi-walled carbon nanotubes to PMMA bone cement improves cytocompatibility and osseointegration. Mater. Sci. Eng. C. Mater. Biol. Appl., 103: 109823. doi: 10.1016/j.msec.2019.109823.