Experience of using the Cochleaton® complex against the background of symptomatic treatment of patients with ear noise (tinnitus)

October 18, 2024
291
УДК:  616.28-008.12
Specialities :
Resume

The aim: evaluation of the results of the application of the Cochleaton® complex against the background of traditional therapy in patients with hearing impairment.

Materials and methods. In the Department of Ear Microsurgery and Otoneurosurgery of the SI «Institute of Otolaryngology named after Prof. O.S. Kolomiychenko of the NAMS of Ukraine» were selected and equally divided into two groups of 40 patients with tinnitus and varying degrees of hearing loss against the background of chronic sensorineural deafness. The study of hearing acuity, the degree and nature of its disorders was conducted in a soundproof chamber using acumetry and a complex of tonal and speech audiometric tests according to the traditional method using the Interacoustics AC-40 audiometer and phonetically balanced articulation speech tests. The degree of hearing impairment was assessed according to the WHO classification. The Ukrainian version of the Tinnitus functional index questionnaire was used for the quantitative assessment of tinnitus.

The results. After treatment, mean Tinnitus functional index decreased, especially in the Cochleaton® group, as evidenced by a significant difference between pre- and post-treatment scores. Subjectively, patients noted an improvement in sleep, a decrease in episodes of waking up at night, and a decrease in the feeling of insufficient rest in the morning. The Cochleaton® was well tolerated, which indicates the safety of its use in the complex symptomatic therapy of tinnitus in patients with sensorineural hearing loss.

Conclusions. The results of clinical studies allow us to recommend the Cochleaton® produced by «Universe Pharm» (Ukraine) in the complex symptomatic treatment of tinnitus in patients with sensorineural hearing loss.

References

  • 1. Jarach C.M., Lugo A., Scala M. et al. (2022) Global Prevalence and Incidence of Tinnitus: A Systematic Review and Meta-analysis. JAMA Neurol., 79(9): 888–900.
  • 2. Hoffman H.J., Reed G.W. (2004) Epidemiology of tinnitus. In: Snow JB Jr, editor. Tinnitus: Theory and Management. Hamilton, Ontario: BC Decker Inc; pp. 16–41.
  • 3. Henry J.A., Griest S., Thielman E. et al. (2016) Tinnitus Functional Index: Development, validation, outcomes research, and clinical application. Hear Res., 334: 58–64.
  • 4. Han B.I., Lee H.W., Ryu S. et al. (2021) Tinnitus Update. J. Clin. Neurol., 17(1): 1–10.
  • 5. Baguley D., McFerran D., Hall D. (2013) Tinnitus. Lancet, 382(9904): 1600–1607.
  • 6. Tunkel D.E., Bauer C.A., Sun G.H. et al. (2014) Clinical practice guideline: tinnitus. Otolaryngol. Head Neck. Surg., 151(Suppl. 2): S1–S40. doi: 10.1177/0194599814545325.
  • 7. Lin R.J., Krall R., Westerberg B.D. et al. (2012) Systematic review and meta-analysis of the risk factors for sudden sensorineural hearing loss in adults. Laryngoscope, 122(3): 624–635.
  • 8. Watts E.J., Fackrell K., Smith S. et al. (2018) Why Is Tinnitus a Problem? A Qualitative Analysis of Problems Reported by Tinnitus Patients. Trends Hear, 22: 2331216518812250.
  • 9. Lai H., Gao M., Yang H. (2024) The potassium channels: Neurobiology and pharmacology of tinnitus. J. Neurosci. Res., 102(1): e25281. doi: 10.1002/jnr.25281.
  • 10. Henton A., Tzounopoulos T. (2021) What’s the buzz? The neuroscience and the treatment of tinnitus. Physiol. Rev., 101(4): 1609–1632. doi: 10.1152/physrev.00029.2020.
  • 11. Langguth B., Elgoyhen A.B., Cederroth C.R. (2019) Therapeutic Approaches to the Treatment of Tinnitus. Annu. Rev. Pharmacol. Toxicol., 59: 291–313. doi: 10.1146/annurev-pharmtox-010818-021556.
  • 12. Shore S.E., Roberts L.E., Langguth B. (2016) Maladaptive plasticity in tinnitus-triggers, mechanisms and treatment. Nat. Rev. Neurol., 12(3): 150–160.
  • 13. Al-Rawashdeh B.M., Qaswal A.B., Suleiman A. et al. (2022) The Quantum Tunneling of Ions Model Can Explain the Pathophysiology of Tinnitus. Brain Sci., 12(4): 426.
  • 14. Tetteh H., Lee M., Lau C.G. et al. (2018) Tinnitus: Prospects for Pharmacological Interventions With a Seesaw Model. Neuroscientist. Aug; 24(4): 353–367. doi: 10.1177/1073858417733415.
  • 15. Huang Y., Lv T., Xie M. et al. (2019) Blood homocysteine and folic acid levels may provide reference value for the treatment of sudden total frequency deafness. Ann. Palliat. Med., 8(5): 604–610. doi: 10.21037/apm.2019.10.08.
  • 16. Coates L. (2010) The effects of magnesium supplementation on sensorineural hearing damage: a critical review of the literature. Univ. West. Ont. Sch. Commun. Sci. Disord. Available online at http://www.uwo.ca/fhs/csd/ebp/reviews/2009-10/Coates.pdf.
  • 17. Ising H., Handrock M., Günther T. et al. 1982 () Increased noise trauma in guinea pigs through magnesium deficiency. Arch. Otorhinolaryngol., 236(2): 139–146. doi: 10.1007/BF00454034.
  • 18. Scheibe F., Haupt H., Vlastos G.A. (2000) Preventive magnesium supplement reduces ischemia-induced hearing loss and blood viscosity in the guinea pig. Eur. Arch. Otorhinolaryngol., 257(7): 355–361. doi: 10.1007/s004050000252.
  • 19. Joachims Z., Babisch W., Ising H. et al. (1983) Dependence of noise-induced hearing loss upon perilymph magnesium concentration. J. Acoust. Soc .Am., 74(1): 104–108.
  • 20. Attias J., Weisz G., Almog S. et al. (1994) Oral magnesium intake reduces permanent hearing loss induced by noise exposure. Am. J. Otolaryngol., 15(1): 26–32. doi: 10.1016/0196-0709(94)90036-1.
  • 21. Thorne P.R., Nuttall A.L., Scheibe F. et al. (1987) Sound-induced artifact in cochlear blood flow measurements using the laser Doppler flowmeter. Hear Res., 31(3): 229–234.
  • 22. Spoendlin H.H. (1962) Ultrastructural features of the organ of Corti in normal and acoustically stimulated animals. Trans. Am. Otol. Soc., 50: 61–82.
  • 23. Attias J., Sapir S., Bresloff I. et al. (2004) Reduction in noise-induced temporary threshold shift in humans following oral magnesium intake. Clin. Otolaryngol. Allied. Sci., 29(6): 635–641. doi: 10.1111/j.1365-2273.2004.00866.x.
  • 24. Nakashima T., Naganawa S., Sone M. et al. (2003) Disorders of cochlear blood flow. Brain. Res. Rev., 43(1): 17–28. doi: 10.1016/s0165-0173(03)00189-9.
  • 25. García J.J., López-Pingarrón L., Almeida-Souza P. et al. (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J. Pineal. Res., 56(3): 225–237. doi: 10.1111/jpi.12128.
  • 26. Crimi E., Ignarro L.J., Napoli C. (2007) Microcirculation and oxidative stress. Free Radic. Res., 41(12): 1364–1375. doi: 10.1080/10715760701732830.
  • 27. Song J., Ouyang F., Xiong Y. et al. (2023) Reassessment of oxidative stress in idiopathic sudden hearing loss and preliminary exploration of the effect of physiological concentration of melatonin on prognosis. Front. Neurol., 14: 1249312. doi: 10.3389/fneur.2023.1249312.
  • 28. Takumida M., Anniko M. (2019) Localization of melatonin and its receptors (melatonin 1a and 1b receptors) in the mouse inner ear. Acta Otolaryngol., 139(11): 948–952.
  • 29. Demir M.G., Altıntoprak N., Aydın S. et al. (2015) Effect of Transtympanic Injection of Melatonin on Cisplatin-Induced Ototoxicity. J. Int. Adv. Otol., 11(3): 202–206.
  • 30. Karlidağ T., Yalçin S., Oztürk A. et al. (2002) The role of free oxygen radicals in noise induced hearing loss: effects of melatonin and methylprednisolone. Auris. Nasus. Larynx, 29(2): 147–152. doi: 10.1016/s0385-8146(01)00137-7.
  • 31. Serra L.S.M., Araújo J.G., Vieira A.L.S. et al. (2020) Role of melatonin in prevention of age-related hearing loss. PLoS One, 15(2): e0228943. doi: 10.1371/journal.pone.0228943.
  • 32. Song J., Ouyang F., Xiong Y. et al. (2023) Reassessment of oxidative stress in idiopathic sudden hearing loss and preliminary exploration of the effect of physiological concentration of melatonin on prognosis. Front Neurol., 14: 1249312. doi: 10.3389/fneur.2023.1249312.
  • 33. Neri G., De Stefano A., Baffa C. et al. (2009) Treatment of central and sensorineural tinnitus with orally administered Melatonin and Sulodexide: personal experience from a randomized controlled study. Acta Otorhinolaryngol. Ital., 29(2): 86–91.
  • 34. Megwalu U.C., Finnell J.E., Piccirillo J.F. (2006) The effects of melatonin on tinnitus and sleep. Otolaryngol. Head Neck. Surg., 134(2): 210–213. doi: 10.1016/j.otohns.2005.10.007.
  • 35. Grossi M.G., Belcaro G., Cesarone M.R. et al. (2010) Improvement in cochlear flow with Pycnogenol® in patients with tinnitus: a pilot evaluation. Panminerva Med., 52(Suppl. 1): 63–67.
  • 36. Luzzi R., Belcaro G., Hu S. et al. (2014) Improvement in symptoms and cochlear flow with pycnogenol in patients with Meniere’s disease and tinnitus. Minerva Med., 105(3): 245–254.
  • 37. Belcaro G., Cesarone M.R., Dugall M. et al. (2010) Investigation of Pycnogenol® in combination with coenzymeQ10 in heart failure patients (NYHA II/III). Panminerva Med., 52(Suppl. 1): 21–25.
  • 38. Meikle M.B., Henry J.A., Griest S.E. et al. (2012) The tinnitus functional index: development of a new clinical measure for chronic, intrusive tinnitus. Ear. Hear., 33(2): 153–176.
  • 39. Заболотний Д.І., Луценко В.І., Борисенко О.М. та ін. (2023) Перший етап процедури перекладу українською мовою, міжкультурної адаптації та валідації опитувальника Tinnitus functional index. Мат. наук.-практ. конф. отоларингологів України. «Сучасні технології діагностики та лікування в отоларингології». 1–3 жовтня: 48–49.
  • 40. Заболотний Д.І., Луценко В.І., Борисенко О.М. та ін. (2023) Переклад українською мовою та міжкультурна адаптація опитувальника Tinnitus Functional Index. Otorhinolaryngology, 5(6): 2–8.
  • 41. Peter N., Kleinjung T., Jeker R. et al. (2017) Tinnitus functional index: validation of the German version for Switzerland. Health Qual. Life Outcomes., 15: 94.