Analysis of the clinical effect size after glucagon-like peptide-1 receptor agonist therapy on the functional activity of the intestinal microbiota, morpho-metabolic indicators and the level of psychological distress in type 2 diabetic patients

June 18, 2024
318
УДК:  616.379-008.64:616.092.19:616.008.1-08:616-094
Resume

Purpose: to determine the size of the clinical effect of glucagon-like peptide-1 receptor agonist (GLP-1ra) treatment on hormonal-metabolic, psychoemotional indicators and levels of bacterial metabolites in patients with type 2 diabetes.

Object and research methods. 88 patients with type 2 diabetes (38 men and 50 women), average age 58.37±3.35 (M±SD), who were prescribed a GLP-1ra, were examined. Before the beginning and after 6 months of therapy, indicators of anthropometry, body composition (bioimpedance method), indicators of carbohydrate metabolism, lipid spectrum of blood serum were determined; the levels of short-chain fatty acids in coprofiltrate were measured by gas chromatography and trimethylamine-N-oxide in blood serum (by immunoenzymatic method). Psychoemotional characteristics were assessed using a questionnaire.

The results. Calculations of the clinical effect (according to Hedges, Cohen) demonstrated the most pronounced effect of GLP-1ra therapy (above 0.8) on indicators of waist circumference, glycemic compensation, triglyceridemia, very low density lipoprotein cholesterol, levels of GLP-1 and TMAO in the blood. Moderate effect (0.5–0.8) was observed for the indicators of body mass index, body weight, visceral fat, total cholesterol, low density lipoprotein cholesterol, and short-chain fatty acids (acetic, propionic, fatty). According to the questionnaires, a positive clinical effect of GLP-1ra therapy was recorded on the diabetes distress assessment scale (total distress and emotional burden).

Conclusion. Calculations of the clinical effect based on the dynamics of changes in the studied clinical indicators in comparison with the initial levels prove that GLP-1ra therapy contributed to the improvement of morpho-metabolic parameters and indicators of psychoemotional status in patients with type 2 diabetes.

References

  • 1. Nauck M.A., Meier J.J. (2016) The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol., 4(6): 525–536. doi: 10.1016/S2213-8587(15)00482-9.
  • 2. Kalra S., Das A.K., Sahay R.K. et al. (2019) Consensus Recommendations on GLP-1 RA Use in the Management of Type 2 Diabetes Mellitus: South Asian Task Force. Diabetes Therapy, 10(5): 1645–1717. doi: 10.1007/s13300-019-0669-4.
  • 3. Nauck M.A., Müller T.D. (2023) Incretin hormones and type 2 diabetes. Diabetologia, 66(10): 1780–1795. doi: 10.1007/s00125-023-05956-x.
  • 4. Arora T., Akrami R., Pais R. et al. (2018) Microbial regulation of the L cell transcriptome. Sci Rep., 8: 1207. doi.org/10.1038/s41598-017-18079-2.
  • 5. Andersen A., Knop F.K., Vilsbøll T. (2021) A Pharmacological and Clinical Overview of Oral Semaglutide for the Treatment of Type 2 Diabetes. Drugs, 81(9): 1003–1030. doi: 10.1007/s40265-021-01499-w.
  • 6. Asadi A., Shadab Mehr N., Mohamadi M.H. et al. (2022) Obesity and gut-microbiota-brain axis: A narrative review. J. Clin. Lab. Anal., 36(5): e24420. doi: 10.1002/jcla.24420.
  • 7. Ding Q.Y., Tian J.X., Li M. et al. (2020) Interactions Between Therapeutics for Metabolic Disease, Cardiovascular Risk Factors, and Gut Microbiota. Front. Cell Infect. Microbiol., 10: 530160. doi: 10.3389/fcimb.2020.530160.
  • 8. Silva Y.P., Bernardi A., Frozza R.L. (2020) The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne), 11: 25. doi: 10.3389/fendo.2020.00025.
  • 9. Son J.W., Lim S. (2024) Glucagon-Like Peptide-1 Based Therapies: A New Horizon in Obesity Management. Endocrinol. Metab. (Seoul)., 39(2): 206–221. doi: 10.3803/EnM.2024.1940.
  • 10. Zigmond A.S., Snaith R.P. (1983) The Hospital Anxiety and Depression Scale, HADS. Acta Psych. Scand., 67(6): 361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
  • 11. Fisher L., Glasgow R.E., Mullan J.T. et al. (2008) Development of a Brief Diabetes Distress Screening Instrument. Ann. Fam. Med., 6(3): 246–252. doi: 10.1370/afm.842.
  • 12. Lazarus R.S., Folkman S. (1991) The Concept of Coping. In: Monat, A. and Lazarus, R.S., Eds., Stress and Coping: An Anthology, Columbia University Press, New York, 189–206.
  • 13. Юр’єва Н.В., Пасічник В.І. (2017) Мотиваційні ресурси стресостійкості військовослужбовців підрозділів Національної гвардії України з конвоювання, екстрадиції та охорони підсудних: монографія. Харків, Національна академія НГУ, 226 с.
  • 14. Cohen J. (1992) A power primer. Psychol. Bull., 112(1): 155–159. doi: 10.1037//0033-2909.112.1.155.
  • 15. Brydges C.R. (2019) Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innov. Aging., 3(4): igz036. doi: 10.1093/geroni/igz036.
  • 16. Zhao L., Chen Y., Xia F. et al. (2018) A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota. Front. Endocrinol. (Lausanne), 9: 233. doi: 10.3389/fendo.2018.00233.
  • 17. Liu F., Yang Q., Zhang H. et al. (2022) The effects of glucagon-like peptide-1 receptor agonists on adipose tissues in patients with type 2 diabetes: A meta-analysis of randomised controlled trials. PLoS One, 17(7): e0270899. doi: 10.1371/journal.pone.0270899.
  • 18. Rutsch A., Kantsjö J.B., Ronchi F. (2020) The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol., 10(11): 604179. doi.org/10.3389/fimmu.2020.604179.
  • 19. Li R., Shokri F., Rincon A.L. et al. (2023) Bi-Directional Interactions between Glucose-Lowering Medications and Gut Microbiome in Patients with Type 2 Diabetes Mellitus: A Systematic Review. Genes (Basel), 14(8): 1572. doi: 10.3390/genes14081572.