Vaccination as a primary prophylaxis against tumors caused by HPV

April 11, 2024
236
УДК:  578.827.1
Resume

Human papillomavirus (HPV) is one of the most speeded infections of reproductive system that causes many diseases among males and females such as pre-cancerous lesions which can transform into cancer. In women and men persistent infection with oncogenics types of HPV can lead to genital cancers, head and neck cancers, pharynx tumors and also causses genital warts and respiratory papillomatosis. Vaccination against HPV is highly effective method of prevention of the infection and as a result — primary prophylaxis of cancer. The aim of this work is to introduce doctors and patients to importance of vaccination against HPV. And also to show safety and efficacy profile of this method of prevention of some malignant tumors. This article includes review of newest literature and trials in the field of HPV vaccination as a method of prevention of benign and malignant tumors caused by this virus.

References

  • 1. Bosch F.X., Lorincz A., Munoz N. et al. (2002) The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol., 55(4): 244–265. doi.org/10.1136/jcp.55.4.244.
  • 2. HPV reference clones — International Human Papillomavirus Reference Center. (n.d.). http://www.hpvcenter.se/human_reference_clones.
  • 3. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012) Biological agents. IARC Monogr. Eval. Carcinog. Risks Hum.,100(Pt B), 1–441.
  • 4. Demarco M., Hyun N., Carter-Pokras O. et al. (2020) A study of type-specific HPV natural history and implications for contemporary cervical cancer screening programs. EClinicalMedicine, 22: 100293. doi.org/10.1016/j.eclinm.2020.100293.
  • 5. Bruni L., Diaz M., Castellsagué X. et al. (2010) Cervical Human Papillomavirus Prevalence in 5 Continents: Meta‐Analysis of 1 Million Women with Normal Cytological Findings. J. Inf. Dis.202(12): 1789–1799. doi.org/10.1086/657321.
  • 6. Insinga R.P., Dasbach E.J., Elbasha E.H. et al. (2007) Progression and regression of incident cervical HPV 6, 11, 16 and 18 infections in young women. Infectious Agents and Cancer, 2(1). doi.org/10.1186/1750-9378-2-15.
  • 7. Vardas E., Giuliano A.R., Goldstone S. et al. (2011) External Genital Human Papillomavirus Prevalence and Associated Factors Among Heterosexual Men on 5 Continents. J. Inf. Dis., 203(1): 58–65. doi.org/10.1093/infdis/jiq015.
  • 8. Olesen T.B., Munk C., Christensen J. et al. (2014) Human papillomavirus prevalence among men in sub-Saharan Africa: a systematic review and meta-analysis. Sexually Transmitted Infections, 90(6): 455–462. doi.org/10.1136/sextrans-2013-051456.
  • 9. Smith J.S., Gilbert P.A., Melendy A. et al. (2011) Age-Specific Prevalence of Human Papillomavirus Infection in Males: A Global Review. J. Adolescent Health, 48(6): 540–552. doi.org/10.1016/j.jadohealth.2011.03.010.
  • 10. Okoye J.O., Ofodile C.A., Adeleke O.K., Obioma O. (2021) Prevalence of high-risk HPV genotypes in sub-Saharan Africa according to HIV status: a 20-year systematic review. Epidemiology and Health, 43, e2021039. doi.org/10.4178/epih.e2021039.
  • 11. Bogale A.L., Belay N.B., Medhin G., Ali J.H. (2020) Molecular epidemiology of human papillomavirus among HIV infected women in developing countries: systematic review and meta-analysis. Virol. J., 17(1). doi.org/10.1186/s12985-020-01448-1.
  • 12. Clifford G.M., Tully S., Franceschi S. (2017) Carcinogenicity of Human Papillomavirus (HPV) Types in HIV-Positive Women: A Meta-Analysis From HPV Infection to Cervical Cancer. Clinical Infectious Diseases, 64(9): 1228–1235. doi.org/10.1093/cid/cix135.
  • 13. Kelly H., Weiss H.A., Benavente Y. et al. (2018) Association of antiretroviral therapy with high-risk human papillomavirus, cervical intraepithelial neoplasia, and invasive cervical cancer in women living with HIV: a systematic review and meta-analysis. The Lancet HIV, 5(1): e45–e58. doi.org/10.1016/s2352-3018(17)30149-2.
  • 14. Farahmand M., Monavari S.H., Tavakoli A. (2021) Prevalence and genotype distribution of human papillomavirus infection in different anatomical sites among men who have sex with men: A systematic review and meta‐analysis. Reviews in Medical Virology, 31(6). doi.org/10.1002/rmv.2219.
  • 15. Marra E., Lin C., Clifford G.M. (2018) Type-Specific Anal Human Papillomavirus Prevalence Among Men, According to Sexual Preference and HIV Status: A Systematic Literature Review and Meta-Analysis. J. Inf. Dis., 219(4): 590–598. doi.org/10.1093/infdis/jiy556.
  • 16. Wei F., Gaisa M.M., D’Souza G. et al. (2021) Epidemiology of anal human papillomavirus infection and high-grade squamous intraepithelial lesions in 29 900 men according to HIV status, sexuality, and age: a collaborative pooled analysis of 64 studies. The Lancet HIV, 8(9): e531–e543. doi.org/10.1016/s2352-3018(21)00108-9.
  • 17. Anogenital Human Papillomavirus in Sexually Abused and Nonabused Children: A Multicenter Study (2011) Pediatrics. doi.org/10.1542/peds.2010-2247d.
  • 18. Awasthi S., Ornelas J., Armstrong A. et al. (2021) Anogenital warts and relationship to child sexual abuse: Systematic review and meta‐analysis. Pediatric Dermatology, 38(4): 842–850. doi.org/10.1111/pde.14650.
  • 19. Wingood G.M., Seth P., DiClemente R.J., Robinson L.S. (2009) Association of Sexual Abuse With Incident High-Risk Human Papillomavirus Infection Among Young African-American Women. Sexually Transmitted Diseases, 36(12): 784–786. doi.org/10.1097/olq.0b013e3181b3567e.
  • 20. de Martel C., Georges D., Bray F. et al. (2020) Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. The Lancet Global Health, 8(2): e180–e190. doi.org/10.1016/s2214-109x(19)30488-7.
  • 21. Sung H., Ferlay J., Siegel R.L. et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3): 209–249. doi.org/10.3322/caac.21660.
  • 22. de Sanjose S., Quint W.G., Alemany L. et al. (2010) Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol., 11(11): 1048–1056. doi.org/10.1016/s1470-2045(10)70230-8.
  • 23. Serrano B., de Sanjosé S., Tous S. et al. (2015) Human papillomavirus genotype attribution for HPVs 6, 11, 16, 18, 31, 33, 45, 52 and 58 in female anogenital lesions. Eur. J. Cancer51(13): 1732–1741. doi.org/10.1016/j.ejca.2015.06.001.
  • 24. Ibrahim Khalil A., Mpunga T., Wei F. et al. (2021) Age‐specific burden of cervical cancer associated with HIV: A global analysis with a focus on sub‐Saharan Africa. Int. J. Cancer, 150(5): 761–772. doi.org/10.1002/ijc.33841.
  • 25. Cancer Today (n.d.). gco.iarc.fr/today/en.
  • 26. Patel H., Wagner M., Singhal P., Kothari S. (2013) Systematic review of the incidence and prevalence of genital warts. BMC Inf. Dis.13(1). doi.org/10.1186/1471-2334-13-39.
  • 27. Prabhu M., Eckert L.O. (2016) Development of World Health Organization (WHO) recommendations for appropriate clinical trial endpoints for next-generation Human Papillomavirus (HPV) vaccines. Papillomavirus Res., 2: 185–189. doi.org/10.1016/j.pvr.2016.10.002.
  • 28. Stelzle D., Tanaka L.F., Lee K.K. et al. (2021) Estimates of the global burden of cervical cancer associated with HIV. The Lancet Global Health9(2): e161–e169.
  • 29. Stelzle D., Tanaka L.F., Lee K.K. et al. (2021) Estimates of the global burden of cervical cancer associated with HIV. The Lancet Global Health9(2): e161–e169.
  • 30. Benedict J.J., Derkay C.S. (2021) Recurrent respiratory papillomatosis: A 2020 perspective. Laryngoscope Invest. Otolaryngol.6(2): 340–345. doi.org/10.1002/lio2.545.
  • 31. Stanley M.A. (2012) Epithelial Cell Responses to Infection with Human Papillomavirus. Clin. Microbiol. Rev., 25(2): 215–222. doi.org/10.1128/cmr.05028-11.
  • 32. Giuliano A.R., Viscidi R., Torres B.N. et al. (2015) Seroconversion following anal and genital HPV infection in men: The HIM study. Papillomavirus Res., 1: 109–115. doi.org/10.1016/j.pvr.2015.06.007.
  • 33. Stanley M.A., Sterling J.C. (2014) Host responses to infection with human papillomavirus. Curr. Probl. Dermatol., 45: 58–74. doi: 10.1159/000355964.
  • 34. Human Papillomaviruses. World Health Organization (2007) books.google.ie/ books?id=0L5bPEEQ7FkC&printsec=frontcover&dq=Human+Papillomaviruses&hl=&cd=1&source=gbs_api. (n.d.). Cervical Cancer Screening. publications.iarc.fr/604.
  • 35. WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention (2021) http://www.who.int/publications/i/item/9789240030824.
  • 36. List of Prequalified Vaccines. WHO — Prequalification of Medical Pro­ducts (IVDs, Medicines, Vaccines and Immunization Devices, Vector Control) (n.d.). extranet.who.int/prequal/vaccines/list-prequalified-vaccines.
  • 37. Introduction of HPV (Human Papilloma Virus) vaccine (n.d.). immunizationdata. who.int/pages/vaccine-intro-by antigen/hpv.html?ISO_3_CODE=&YEAR.
  • 38. Efficacy, effectiveness and immunogenicity of one dose of HPV vaccine compared with no vaccination, two doses, or three doses. Cochrane Response March 2022, accessed November 2022.
  • 39. Tpw J.G., Phipps R.P., Mandel T.E. (1980) The Maintenance and Regulation of the Humoral Immune Response: Persisting Antigen and the Role of Follicular Antigen‐Binding Dendritic Cells as Accessory Cells. Immunol. Rev., 53(1): 175–201.
  • 40. Man I., Vänskä S., Lehtinen M., Bogaards J.A. (2020) Human Papillomavirus Genotype Replacement: Still Too Early to Tell? J. Inf. Dis. doi.org/10.1093/infdis/jiaa032.
  • 41. D’Addario M., Scott P., Redmond S., Low N. (2014) HPV vaccines: systematic review of literature on alternative vaccination schedules. Report to WHO. Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland Geneva: WHO 2014.
  • 42. Grading of scientific evidence. Table II: Immunogenicity of 2 vs 3 doses of HPV vaccination in immunocompetent girls. Geneva: World Health Organization, accessed August 2022.
  • 43. Dobson S.R.M., McNeil S., Dionne M. et al. (2013) Immunogenicity of 2 Doses of HPV Vaccine in Younger Adolescents vs 3 Doses in Young Women. JAMA, 309(17): 1793.
  • 44. Romanowski B., Schwarz T.F., Ferguson L. et al. (2015) Sustained immunogenicity of the HPV-16/18 AS04-adjuvanted vaccine administered as a two-dose schedule in adolescent girls: Five-year clinical data and modeling predictions from a randomized study. Human Vaccines & Immunotherapeutics, 12(1): 20–29.
  • 45. Iversen O.E., Miranda M.J., Ulied A. et al. (2016) Immunogenicity of the 9-Valent HPV Vaccine Using 2-Dose Regimens in Girls and Boys vs a 3-Dose Regimen in Women. JAMA, 316(22): 2411. doi.org/10.1001/jama.2016.17615.
  • 46. Puthanakit T., Huang L.M., Chiu C.H. et al. (2016) Randomized Open Trial Comparing 2-Dose Regimens of the Human Papillomavirus 16/18 AS04-Adjuvanted Vaccine in Girls Aged 9–14 Years Versus a 3-Dose Regimen in Women Aged 15–25 Years. J. Inf. Dis., 214(4),: 525–536. doi.org/10.1093/infdis/jiw036.
  • 47. Arbyn M., Xu L., Simoens C., Martin-Hirsch. P.P. (2018) Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database of Systematic Reviews, 2020(3). doi.org/10.1002/14651858.cd009069.pub3.
  • 48. Zaman K., Schuind A.E., Adjei S. et al. (2024) Safety and immunogenicity of Innovax bivalent human papillomavirus vaccine in girls 9–14 years of age: Interim analysis from a phase 3 clinical trial. Vaccine. doi.org/10.1016/j.vaccine.2024.02.077.
  • 49. Kjaer S.K., Sigurdsson K., Iversen O.E. et al. (2009) A Pooled Analysis of Continued Prophylactic Efficacy of Quadrivalent Human Papillomavirus (Types 6/11/16/18) Vaccine against High-grade Cervical and External Genital Lesions. Cancer Prevention Research, 2(10), 868–878. doi.org/10.1158/1940-6207.capr-09-0031.
  • 50. Xu L., Selk A., Garland S.M. et al. (2019) Prophylactic vaccination against human papillomaviruses to prevent vulval and vaginal cancer and their precursors. Expert Review of Vaccines, 18(11), 1157–1166. doi.org/10.1080/14760584.2019.1692658.
  • 51. Lehtinen M., Paavonen J., Wheeler C.M. et al. (2012) Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. The Lancet Oncology, 13(1), 89–99. doi.org/10.1016/s1470-2045(11)70286-8.
  • 52. Bergman H., Buckley B.S., Villanueva G. et al. (2019) Comparison of different human papillomavirus (HPV) vaccine types and dose schedules for prevention of HPV-related disease in females and males. Cochrane Database of Systematic Reviews, 2019(11). doi.org/10.1002/14651858.cd013479.
  • 53. Drolet M., Bénard L., Pérez N., Brisson M. (2019) Population Level-Impact and Herd Effects Following the Introduction of Human Papillomavirus Vaccination Programmes: Updated Systematic Review and Meta-analysis. Obstetrical & Gynecological Survey, 74(10), 590–592. doi.org/10.1097/ogx.0000000000000724.
  • 54. Rosenblum H.G., Lewis R.M., Gargano J.W. et al. (2021) Declines in Prevalence of Human Papillomavirus Vaccine-Type Infection Among Females after Introduction of Vaccine — United States, 2003–2018. MMWR. Morbidity and Mortality Weekly Report, 70(12), 415–420. doi.org/10.15585/mmwr.mm7012a2.
  • 55. Tabrizi S.N., Brotherton J.M.L., Kaldor J.M. et al. (2014) Assessment of herd immunity and cross-protection after a human papillomavirus vaccination programme in Australia: a repeat cross-sectional study. The Lancet Infectious Diseases, 14(10), 958–966. doi.org/10.1016/s1473-3099(14)70841-2.
  • 56. Lei J., Ploner A., Elfström K.M. et al. (2020) HPV Vaccination and the Risk of Invasive Cervical Cancer. New England Journal of Medicine, 383(14): 1340–1348.
  • 57. McCormack P.L. (2014) Quadrivalent Human Papillomavirus (Types 6, 11, 16, 18) Recombinant Vaccine (Gardasil®): A Review of Its Use in the Prevention of Premalignant Anogenital Lesions, Cervical and Anal Cancers, and Genital Warts. Drugs, 74(11): 1253–1283. doi.org/10.1007/s40265-014-0255-z.
  • 58. Protection against anogenital warts conferred by HPV vaccination in immunocompetent girls. Geneva: World Health Organization (2022). cdn.who.int/media/docs/default-source/immunization/ position_paper_documents/human-papillomavirus-(hpv)/hpv-grad-protection-warts- immunocompetent.pdf?sfvrsn=cf166642_2.
  • 59. Bollerup S., Baldur-Felskov B., Blomberg M. et al. (2016) Significant Reduction in the Incidence of Genital Warts in Young Men 5 Years Into the Danish Human Papillomavirus Vaccination Program for Girls and Women. Sexually Transmitted Diseases, 43(4): 238–242.
  • 60. Ali H., Donovan B., Wand H. et al. (2013) Genital warts in young Australians five years into national human papillomavirus vaccination programme: national surveillance data. BMJ, 346(1), f2032–f2032. doi.org/10.1136/bmj.f2032.
  • 61. Staadegaard L., Rönn M.M., Soni N. et al. (2022) Immunogenicity, safety, and efficacy of the HPV vaccines among people living with HIV: A systematic review and meta-analysis. EClinicalMedicine, 52: 101585. doi.org/10.1016/j.eclinm.2022.101585.
  • 62. Levin M.J., Moscicki A.B., Song L.Y. et al. (2010) Safety and Immunogenicity of a Quadrivalent Human Papillomavirus (Types 6, 11, 16, and 18) Vaccine in HIV-Infected Children 7 to 12 Years Old. JAIDS Journal of Acquired Immune Deficiency Syndromes, 55(2): 197–204.
  • 63. Weinberg A., Song L Y., Saah A. et al. (2012) Humoral, Mucosal, and Cell-Mediated Immunity Against Vaccine and Nonvaccine Genotypes After Administration of Quadrivalent Human Papillomavirus Vaccine to HIV-Infected Children. J. Inf. Dis., 206(8): 1309–1318. doi.org/10.1093/infdis/jis489.
  • 64. Denny L., Hendricks B., Gordon C. et al. (2013) Safety and immunogenicity of the HPV-16/18 AS04-adjuvanted vaccine in HIV-positive women in South Africa: A partially-blind randomised placebo-controlled study. Vaccine, 31(48): 5745–5753.
  • 65. Toft L., Storgaard M., Muller M. et al. (2013) Comparison of the Immunogenicity and Reactogenicity of Cervarix and Gardasil Human Papillomavirus Vaccines in HIV-Infected Adults: A Randomized, Double-Blind Clinical Trial. J. Inf. Dis., 209(8): 1165–1173.
  • 66. Faust H., Toft L., Sehr P. et al. (2016) Human Papillomavirus neutralizing and cross-reactive antibodies induced in HIV-positive subjects after vaccination with quadrivalent and bivalent HPV vaccines. Vaccine, 34(13): 1559–1565. doi.org/10.1016/j.vaccine.2016.02.019.
  • 67. WHO Grading of scientific evidence — table VI: Efficacy of HPV vaccination in HIV infected girls. terrance.who.int/mediacentre/data/sage/SAGE_ Docs_Ppt_Oct2016/10_session_HPV/Oct2016_session10_HPV_rct.pdf.
  • 68. Machalek D., Rees H., Chikandiwa A. et al. (2022) Impact of one and two human papillomavirus (HPV) vaccine doses on community-level HPV prevalence in South African adolescent girls: study protocol and rationale for a pragmatic before-after design. BMJ Open, 12(2), e059968. doi.org/10.1136/bmjopen-2021-059968.
  • 69. Malagón T., Drolet M., Boily M.C. et al. (2012) Cross-protective efficacy of two human papillomavirus vaccines: a systematic review and meta-analysis. The Lancet Infectious Diseases, 12(10), 781–789. doi.org/10.1016/s1473-3099(12)70187-1.
  • 70. Schwarz T.F., Huang L.M., Valencia A. et al. (2019) A ten-year study of immunogenicity and safety of the AS04-HPV-16/18 vaccine in adolescent girls aged 10-14 years. Human Vaccines & Immunotherapeutics, 15(7–8), 1970–1979. doi.org/10.1080/21645515.2019.1625644.
  • 71. Kjaer S.K., Nygård M., Sundström K. et al. (2020) Long-term effectiveness of the nine-valent human papillomavirus vaccine in Scandinavian women: interim analysis after 8 years of follow-up. Human Vaccines & Immunotherapeutics, 17(4), 943–949.
  • 72. Kjaer S.K., Nygård M., Dillner J. et al. (2017) A 12-Year Follow-up on the Long-Term Effectiveness of the Quadrivalent Human Papillomavirus Vaccine in 4 Nordic Countries. Clinical Infectious Diseases, 66(3), 339–345. doi.org/10.1093/cid/cix797.
  • 73. Basu P., Malvi S.G., Joshi S. et al. (2021) Vaccine efficacy against persistent human papillomavirus (HPV) 16/18 infection at 10 years after one, two, and three doses of quadrivalent HPV vaccine in girls in India: a multicentre, prospective, cohort study. Lancet Oncol., 22(11): 1518–1529. doi.org/10.1016/s1470-2045(21)00453-8.
  • 74. Goldstone S.E., Giuliano A.R., Palefsky J.M. et al. (2022) Efficacy, immunogenicity, and safety of a quadrivalent HPV vaccine in men: results of an open-label, long-term extension of a randomised, placebo-controlled, phase 3 trial. Lancet Inf. Dis., 22(3): 413–425.
  • 75. Duration of protection conferred by HPV vaccination in immunocompetent females. Geneva: World Health Organization» (2022). cdn.who.int/ media/docs/default-source/immunization/position_paper_documents/ human-papillomavirus-(hpv)/ hpv-grad-duration-immunocompetent.pdf?sfvrsn=76d0d1ce_1.
  • 76. Global Advisory Committee on Vaccine Safety. Safety of HPV vaccines. Geneva: World Health Organization (2022) http://www.who.int/groups/global-advisory-commit- tee-on-vaccine-safety/topics/human-papillomavirus-vaccines/safety.
  • 77. Henschke N., Bergman H., Villanueva G. et al. (2022) Effects of human papillomavirus (HPV) vaccination programmes on community rates of HPV-related disease and harms from vaccination. Cochrane Database of Systematic Reviews, 2022(5).
  • 78. Einstein M.H., Baron M., Levin M.J. et al. (2011) Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine. Human Vaccines, 7(12): 1343–1358. doi.org/10.4161/hv.7.12.18281.
  • 79. Immunization stress-related response: a manual for program managers and health professionals to prevent, identify and respond to stress-related responses following immunization. Geneva: World Health Organization (2022) http://www.who.int/publications/i/item/9789241515948.
  • 80. Safety of HPV vaccination in adolescent girls. Geneva: World Health Organization (2022) cdn.who.int/ media/docs/ default-source/ immunization/position_paper_do- cuments/human-papillomavirus-(hpv)/hpv-grad-safety.pdf?sfvrsn=b1f4c1b2_2.
  • 81. Moreira E.D., Block S.L., Ferris D. et al. (2016) Safety Profile of the 9-Valent HPV Vaccine: A Combined Analysis of 7 Phase III Clinical Trials. Pediatrics, 138(2). doi.org/10.1542/peds.2015-4387.
  • 82. Andrews N., Stowe J., Miller E. (2017) No increased risk of Guillain-Barré syndrome after human papilloma virus vaccine: A self-controlled case-series study in England. Vaccine, 35(13): 1729–1732. doi.org/10.1016/j.vaccine.2017.01.076.
  • 83. Angelo M., Zima J., Tavares Da Silva F. et al. (2014) Post‐licensure safety surveillance for human papillomavirus‐16/18‐AS04‐adjuvanted vaccine: more than 4 years of experience. Pharmacoepidemiol. Drug Saf., 23(5): 456–465. doi.org/10.1002/pds.3593.
  • 84. http://www.who.int/ groups/global-advisory-committee-on-vaccine-safety/topics/human-papillomavirus-vaccines/infertility.
  • 85. Kojic E.M., Kang M., Cespedes M.S. et al. (2014) Immunogenicity and Safety of the Quadrivalent Human Papillomavirus Vaccine in HIV-1-Infected Women. Clin. Inf. Dis., 59(1): 127–135. doi.org/10.1093/cid/ciu238.
  • 86. Kahn J.A., Xu J., Kapogiannis B.G. et al. (2013) Immunogenicity and Safety of the Human Papillomavirus 6, 11, 16, 18 Vaccine in HIV-Infected Young Women. Clin. Inf. Dis., 57(5): 735–744. doi.org/10.1093/cid/cit319.
  • 87. Wilkin T., Lee J., Lensing S. et al. (2010) Safety and Immunogenicity of the Quadrivalent Human Papillomavirus Vaccine in HIV‐1–Infected Men. J. Inf. Dis., 202(8): 1246–1253.
  • 88. Levin M.J., Moscicki A.B., Song L.Y. et al. (2010) Safety and Immunogenicity of a Quadrivalent Human Papillomavirus (Types 6, 11, 16, and 18) Vaccine in HIV-Infected Children 7 to 12 Years Old. JAIDS J. Acquired Immune Deficiency Syndromes, 55(2): 197–204. doi.org/10.1097/qai.0b013e3181de8d26.
  • 89. Safety of HPV vaccination in HIV infected girls. Geneva: World Health Organization (2022) cdn.who.int/media/docs/ default-source/immunization/ position_paper_documents/human-papillomavirus-(hpv)/ hpv-grad-efficacy- hiv.pdf?sfvrsn=ff4a5b5c_2.
  • 90. Scheller N.M., Pasternak B., Mølgaard-Nielsen D. et al. (2017) Quadrivalent HPV Vaccination and the Risk of Adverse Pregnancy Outcomes. New Engl. J. Med., 376(13): 1223–1233.
  • 91. Noronha A.S., Markowitz L.E., Dunne E.F. (2014) Systematic review of human papillomavirus vaccine coadministration. Vaccine, 32(23): 2670–2674.
  • 92. Coadministration of a 9-Valent Human Papillomavirus Vaccine With Meningococcal and Tdap Vaccines (2015) Pediatrics, 136(3): X17–X17. doi.org/10.1542/peds.2014-4199d.
  • 93. Options for linking health interventions for adolescents with HPV vaccination. Geneva: World Health Organization (2014) http://www.who.int/publications/m/ item/options-for-linking-health-interventions-for-adolescents-with-hpv-vaccination.