Вступ
Хоча належне управління судинними факторами ризику та збільшення використання профілактичних заходів у період з 1970-х до початку 2000-х років сприяли щорічному зниженню захворюваності на інсульт на 1–1,5% у країнах з високим рівнем доходу, ця патологія все ще залишається основною причиною інвалідності серед дорослих і 2-ю серед причин смертності в усьому світі [1]. Крім того, зростання поширеності цукрового діабету та ожиріння разом зі старінням населення, ймовірно, підвищать захворюваність на інсульт [2–4].
Лікування пацієнтів з ішемічним інсультом вступило в нову еру в 1995 р., коли Національним інститутом неврологічних розладів та інсульту (National Institute of Neurological Disorders and Stroke) було опубліковано результати дослідження рекомбінантного тканинного активатора плазміногену (recombinant tissue plasminogen activator — r-tPA), які показали, що відновлення кровотоку в перші 3 год після початку інсульту здатне врятувати значну частину гіпоперфузованої мозкової тканини і покращити результат для хворого [5]. Подальші випробування допомогли удосконалити методи реканалізації шляхом збільшення часового вікна до 4,5 год у певних підгрупах пацієнтів, використовуючи тромболізис та різні пристрої для механічного видалення тромбу протягом 24 год від початку інсульту [6–10].
Однак лише до 20% хворих із гострим ішемічним інсультом підходять для реканалізаційного лікування [11]. Крім того, показники успішної реканалізації становлять приблизно 46% для внутрішньовенного тромболізису, 63% — для внутрішньоартеріального тромболізису та 83% — для механічної тромбектомії. Реканалізація не завжди приводить до ефективної реперфузії тканин, що призводить до погіршення неврологічного стану пацієнта через набряк головного мозку, геморагічну трансформацію або ішемічне/реперфузійне пошкодження [12]. Показано, що оксидативний стрес і нейрозапалення роблять значний внесок у розвиток цих ускладнень. Таким чином, розуміння механізмів ішемічного/реперфузійного пошкодження та пошук шляхів запобігання йому значно покращать результат лікування хворих із ішемічним інсультом [13].
Оксидативний стрес у патофізіології ішемічного/реперфузійного пошкодження після гострого ішемічного інсульту
Оксидативний стрес являє собою дисбаланс між швидкістю утворення активних форм кисню (АФК) і здатністю біологічної системи очищувати ці високореактивні молекули [14]. Тканина мозку є особливо чутливою до оксидативного стресу у зв’язку з низкою особливостей, таких як:
- вона має найвищу метаболічну активність на одиницю маси порівняно з іншими органами;
- має низький рівень антиоксидантних ферментів, таких як супероксиддисмутаза, каталаза, глутатіонпероксидаза, гемоксигеназа-1;
- після вивільнення нейромедіатори сприяють перевантаженню клітин кальцієм і в результаті свого метаболізму генерують АФК;
- клітини головного мозку мають більш високе співвідношення поверхні мембрани до об’єму цитоплазми, а плазмалема багата на холестерин, організована у вигляді ліпідних рафтів, містить поліненасичені жирні кислоти і дуже чутлива до окислювального пошкодження;
- мозок має нижчий рівень цитохром с-оксидази, що призводить до збільшення утворення супероксиду під час утворення аденозинтрифосфату (АТФ);
- залізо, що вивільняється з пошкодженої мозкової тканини, може каталізувати утворення вільних радикалів [15–18].
Відновлення кровопостачання ішемізованої тканини хоча й необхідне для відновлення аеробного метаболізму, однак також призводить до продукції АФК, що пригнічує здатність тканини мозку нейтралізувати ці АФК і призводить до посилення оксидативного стресу. Результати досліджень показали, що церебральна ішемія супроводжується підвищенням концентрації маркерів оксидативного стресу в сироватці крові [19–21].
Основними АФК є супероксид-аніони (O2–), гідроксильні радикали (OH–) та пероксид водню (H2O2), що утворюються внаслідок активності мітохондрій, циклооксигеназ, ліпоксигеназ, синтаз оксиду азоту (NOS), НАДФН-оксидази (NOX) і ксантиноксидази [22, 23]. Після утворення АФК взаємодіють з різними біологічними молекулами:
- АФК окиснюють, руйнують або розщеплюють білки, що призводить до агрегації білків, модифікації активності іонних каналів та інактивації ферментів [24];
- атакуючи вуглець-вуглецеві зв’язки поліненасичених жирних кислот, АФК ініціюють перекисне окиснення ліпідів, саморозповсюджувальний ланцюжок подій, що призводить до утворення нестабільних ліпідних радикалів, які далі реагують з киснем з утворенням ліпідних пероксильних радикалів [25]. Перекисне окиснення мембранних ліпідів змінює товщину ліпідного бішару, текучість та проникність мембрани;
- АФК можуть безпосередньо пошкоджувати дезоксирибонуклеїнові кислоти (ДНК), спричиняючи дволанцюгові розриви, структурні зміни, мутації ДНК або перехресні зв’язки білок — ДНК [26];
- вони також регулюють декілька сигнальних каскадів апоптозу та некрозу. АФК може активувати р53, ключову молекулу в індукованій АФК загибелі клітин [27], яка, у свою чергу, активує p53-активований модулятор апоптозу (PUMA). АФК можуть відкривати перехідну пору мітохондріальної проникності (mitochondrial permeability transition pore — MPTP), що призводить до набухання мітохондрій і вивільнення цитохрому с, тим самим ініціюючи апоптоз [28]. Шлях мітоген-активованої протеїнкінази (mitogen activated protein kinase — MAPK), який також запускається АФК, має три основних учасники: c-Jun NH2-кінцеву кіназу (c-Jun N-terminal kinase — JNK), кіназу 1/2, регульовану позаклітинним сигналом (extracellular signal-regulated kinase 1/2 — ERK 1/2), і p38 MAPK. У той час як ERK 1/2 відіграє суперечливу роль у загибелі клітин і, здається, володіє нейропротекторною дією проти ішемічного/реперфузійного пошкодження, JNK та p38 MAPK, активовані АФК через кіназу-1, що регулює сигнал апоптозу (apoptosis signal-regulating kinase 1 — ASK1), значною мірою спричиняють апоптоз під час реперфузії після ішемічного інсульту [15, 29, 30].
Мітохондрії як джерело АФК та їх роль у церебральному ішемічному/реперфузійному пошкодженні
Мітохондрії — «електростанції клітини» — генерують >90% АТФ у мозку шляхом β-окиснення жирних кислот, циклу Кребса та окисного фосфорилювання [31]. Вони також використовують піруват з цитозольного гліколізу для відновлення флавінаденіндинуклеотиду та нікотинамідаденіндинуклеотиду, які беруть участь у передачі енергії до ланцюга транспортування електронів (electron transport chain).
Під час ішемії підвищується внутрішньомітохондріальний рівень кальцію, активуючи мітохондріальні фосфатази і призводячи до дефосфорилювання комплексів окисного фосфорилювання, особливо цитохрому с і цитохром с-оксидази, і, зрештою, до втрати алостеричного інгібування АТФ [32]. Оскільки кисень як кінцевий акцептор електронів відсутній, окисне фосфорилювання максимально активується за механізмом прямого зв’язку (feed-forward mechanism).
Мітохондрії відіграють ключову роль у рециркуляції клітин через аутофагію, доставляючи пошкоджені органели і білки до лізосом для остаточної деградації за допомогою багатоетапного процесу, який регулюється низкою сигнальних шляхів. У початковій фазі ішемії активація аутофагії відіграє захисну роль, запобігаючи вивільненню цитотоксичних речовин з дисфункційних мітохондрій, при цьому процес додатково активується шляхом реперфузії [33]. Однак тривала активація аутофагії призводить до збільшення руйнування клітин.
Мітохондріальний метаболізм, чутливість до MPTP і до кальцію змінюються залежно від віку та статі, що може пояснити гірший результат судинних подій у осіб похилого віку [34].
На рисунку показано множинні шляхи загибелі клітин після ішемії.
NOS як джерело АФК
Оксид азоту (NO) синтезується за допомогою реакції, що каталізується NOS. У центральній нервовій системі експресуються три типи останніх: нейрональна (nNOS) та ендотеліальна (eNOS), які є кальційзалежними і виробляють наномолярні рівні NO, а також індуцибельна (iNOS), яка не залежить від кальцію і виробляє мікромолярні рівні NO [35].
На ранніх стадіях ішемії зниження кровотоку підвищує активність eNOS, що призводить до вироблення невеликих кількостей NO, які регулюють кровотік і захищають мікроциркуляторне русло головного мозку. Однак ексайтотоксичність глутамату та наступне перевантаження клітин кальцієм викликають утворення NO nNOS, що має нейротоксичний ефект. Після реперфузії підвищена експресія iNOS через NF-κB-шлях призводить до надмірної кількості NO, яка може зберігатися до 7 днів [36].
NO також бере участь у руйнуванні гематоенцефалічного бар’єра і розвитку набряку мозку. Матриксні металопротеїнази (matrix metalloproteinases — ММРs) послаблюють гематоенцефалічний бар’єр, гідролізуючи білки щільних контактів та позаклітинного матриксу. MMP-2 активується одразу після церебральної ішемії, тоді як MMP-9 — на пізніших стадіях. Показано, що надмірна експресія eNOS або фармакологічне використання донора NO пригнічує експресію MMP-2 в ендотеліальних клітинах [8, 37].
NOX як джерело АФК
NOX являє собою ферментативний комплекс, який переносить електрони від НАДФН до молекул кисню через клітинну мембрану, таким чином утворюючи супероксид [23]. Судинні ізоформи NOX володіють нижчою активністю, продукуючи АФК, які використовуються головним чином у сигнальних каскадах, але після ішемії і особливо після реперфузії вони здатні продукувати високі рівні АФК, які посилюють оксидативний стрес [38]. Ймовірно, глюкоза, а не кисень, підвищує активність нейрональної NOX, що може пояснити несприятливий вплив гіперглікемії на результат інсульту і гірший прогноз при цій патології у хворих на цукровий діабет [39].
Ксантиноксидаза як джерело АФК
Ксантиноксидоредуктаза каталізує окиснення гіпоксантину до ксантину та ксантину до сечової кислоти, відновлюючи при цьому НАД+ або молекулярний кисень. У стані спокою ксантиноксидоредуктаза існує як ксантиндегідрогеназа, яка надає перевагу НАД+ як донору електронів. Під час реперфузії, окиснення і протеолізу ксантиндегідрогеназа перетворюється у ксантиноксидазу, яка має більшу спорідненість до кисню як донора електронів і метаболізує гіпоксантин і ксантин з утворенням пероксиду водню [40, 41].
Антиоксидантні сигнальні шляхи
Клітини також мають антиоксидантні сигнальні шляхи, які демонструють складну взаємодію з сигнальними шляхами клітинної смерті.
Одним з важливих механізмів є активація фактора-2, пов’язаного з еритроїдним ядерним фактором-2 (nuclear factor erythroid 2-related factor 2 — Nrf2).
In vitro Nrf2 проявляє нейропротекторні властивості, пригнічуючи токсичність глутамату та перевантаження кальцієм [42]. In vivo Nrf2-нокаутовані миші більш сприйнятливі до ішемічного пошкодження мозку, набряку мозку та мають більший об’єм інфаркту [43].
Сиртуїни (SIRT 1–7) — група еволюційно консервативних НАД+-залежних лізиндеацетилаз і АДФ-рибозилаз, які беруть участь у багатьох клітинних процесах, таких як оксидативний стрес, апоптоз та енергетичний метаболізм, і які широко вивчаються при ішемічному/реперфузійному пошкодженні. Сприймаючи рівні НАД+, сиртуїни можуть ініціювати низку адаптивних реакцій, регулюючи метаболічну ефективність клітини.
Зокрема, SIRT 1 розташований переважно в ядрах нейронів, а також в астроцитах і мікроглії. Він активує сімейство факторів транскрипції FOXO. Встановлено, що FOXO3a може підвищувати активність поглинання АФК [44, 45]. Крім того, SIRT 1 зберігає кровотік і підтримує функцію мітохондрій. Його рівні знижуються при церебральній ішемії та продовжують знижуватися після реперфузії [46]. SIRT 6 також є ядерним сиртуїном, посттрансляційно модифікованим активними формами азоту. Однак виявлено, що він має шкідливий вплив при церебральній ішемії, посилюючи некротичну загибель клітин [46]. SIRT 3 — в основному мітохондріальний сиртуїн, який регулює енергетичний метаболізм і сприяє нейрозахисту від нейротоксичності, опосередкованої N-метил-D-аспартатом (N-methyl-D-aspartate — NMDA) [47].
Дефіцит глюкози та кисню під час церебральної ішемії заважає клітинам генерувати достатню кількість АТФ, що призводить до порушення активності Na+/K+АТФ-ази, клітинної деполяризації та вивільнення глутамату, який, діючи на рецептори NMDA та α-аміно-3-гідрокси-5-метилізоксазол-пропіонової кислоти (α-amino-3-hydroxy-5-methylisoxazole-propionic acid — AMPA), призводить до масованого притоку кальцію та натрію. Підвищення рівня внутрішньоклітинного кальцію призводить до збільшення АФК, які пошкоджують внутрішньоклітинні компоненти, у тому числі нуклеїнові кислоти. Пошкодження ДНК виявляється за допомогою полі-АДФ рибозних трансфераз (poly-ADP ribose transferases — PARPs), які утворюють полі-АДФ рибозні одиниці з НАД+ для активації відновлення ДНК. Надмірна активація PARPs може споживати до 80% внутрішньоклітинного НАД+, обмежуючи його доступність для інших ферментів, включаючи сиртуїни [46].
Перетворення знань про оксидативний стрес при ішемічному інсульті на терапевтичні підходи
На жаль, перетворення накопичених знань про внесок оксидативного стресу в пошкодження клітин при ішемічному інсульті на більш ефективні методи лікування виявилося складним завданням. Незважаючи на успіх у доклінічних випробуваннях, клінічне використання ряду молекул виявилося невдалим або дало непереконливі результати, що спонукало наукове співтовариство шукати причини цих розбіжностей, аби уникнути невдач у майбутньому.
Більшість доклінічних досліджень проводили на тваринних моделях транзиторної ішемії тривалістю 1–2 год, значно рідше — на моделях перманентної церебральної ішемії. Лише невеликий відсоток пацієнтів досягає реканалізації так рано. Терапевтичне часове вікно для ендоваскулярного лікування було подовжено до 24 год, але у багатьох хворих виникають повторні оклюзії або повторний інсульт, і успіх реканалізації також залежить від колатерального кровотоку [48, 49].
Показники успіху в доклінічних моделях визначаються розміром інфаркту, у той час як у клінічних дослідженнях кінцевою точкою є функціональний результат, і у людей може бути значна розбіжність між обсягом інфаркту і клінічним дефіцитом [50].
Інсульт зазвичай виникає у осіб похилого віку, з вираженою супутньою патологією, тоді як доклінічні дослідження проводять переважно із залученням молодих і здорових тварин. Так, старіння призводить до значного зниження здатності мозку відновлювати свої біохімічні та клітинні функції. Спостерігають більш високий рівень смертності зі збільшенням віку. Можливо, це пов’язано з вищим рівнем оксидативного стресу, мітохондріальною дисфункцією, викликаною старінням, а також наявністю супутніх захворювань, таких як цукровий діабет або артеріальна гіпертензія, які можуть впливати на ефективність нейропротекторної терапії. Крім того, у пацієнтів може спостерігатися низка постінсультних станів, таких як психічні розлади, зниження когнітивних функцій, обструктивне апное уві сні, які зазвичай не оцінюють на тваринних моделях [51].
Активація ендогенного антиоксидантного захисту
Вітаміни С і Е є одними з найбільш вивчених природних антиоксидантів. Обсерваційні дослідження за участю людей показали, що підвищення рівня вітаміну С у плазмі крові корелює зі зниженням частоти інсульту [52]. У дослідженнях на тваринах 4-тижневе попереднє лікування вітамінами С і Е знижувало ступінь перекисного окиснення ліпідів і об’єм інфаркту після оклюзії середньої церебральної артерії [53], але введення дегідроаскорбінової кислоти після оклюзії артерії у тварин з транзиторною оклюзією мозкової артерії не обумовлювало значного зменшення об’єму ураження [54]. Подібним чином дослідження на людях із застосуванням антиоксидантних вітамінних добавок не показали жодних переваг ані в гострий період інсульту, ані для профілактики [55, 56].
Запобігання утворенню АФК при церебральній ішемії
Іншою можливістю було б запобігання утворенню АФК в ішемізованій тканині.
Інгібування NOX може бути однією з можливостей, хоча поки неясно, яка ізоформа NOX і які типи клітин відіграють ключову роль у виробленні АФК, спричиненому ішемією/реперфузією [38]. NOX2 сприяє утворенню супероксиду, NOX4 — перекису водню [57, 58]. Миші з дефіцитом NOX2 і NOX4 мали менший розмір інфаркту [59]. Розробка селективних інгібіторів NOX, здатних націлюватися на конкретні ізоформи і не мати нецільових і побічних ефектів, може виявитися корисною при інсульті.
Інгібітор ксантиноксидази алопуринол, який застосовують при подагрі, може зменшувати утворення супероксиду, але, незважаючи на обнадійливі результати експериментальних досліджень, він не продемонстрував жодної користі в клінічних умовах [58, 60, 61].
Поглиначі вільних радикалів
Ліпоєва кислота переробляє вітамін Е і С і є поглиначем вільних радикалів та кофактором у мітохондріальних дегідрогеназних комплексах [62]. Застосування ліпоєвої кислоти зменшувало розмір інфаркту у тваринних моделях інсульту і покращувало функціональне відновлення [63, 64]. У ретроспективному дослідженні за участю 172 хворих із гострим ішемічним інсультом, яким було проведено тромболізис, 47 з яких отримували 600 мг α-ліпоєвої кислоти на добу, продемонстровано покращення результатів як через 3 міс, так і через 1 рік [65].
NXY-059 продемонстрував зменшення розміру інфаркту в моделі постійної оклюзії середньої мозкової артерії у щурів, покращення функціональних результатів у мавп і зниження інвалідності через 90 днів при призначенні протягом 6 год після початку інсульту у 1722 пацієнтів у клінічному дослідженні SAINT I, однак проведене згодом клінічне випробування III фази (SAINT II), яке охопило 3306 осіб, не показало клінічної ефективності [66–69].
Метааналіз експериментальних досліджень з використанням U-74006F — потужного інгібітора індукованого вільними радикалами кисню перекисного окиснення ліпідів у мікросудинній та нервовій тканинах — виявив зменшення об’єму інфаркту майже на 1/3 і покращення нейроповедінкових показників майже на 50% [70]. Але клінічні випробування за участю пацієнтів з інсультом були достроково припинені або через недостатню ефективність, або у зв’язку із занепокоєнням щодо безпеки. У метааналізі показано, що препарат фактично підвищує смертність та інвалідизацію після ішемічного інсульту [71].
N-ацетилцистеїн — попередник глутатіону з вільною тіоловою групою, завдяки якій він може реагувати з АФК, — у моделях інсульту у щурів зменшував розмір інфаркту і покращував неврологічну оцінку [72].
Мелатонін — ендогенна молекула, синтезована в шишкоподібній залозі, — здатний ефективно поглинати киснево-центровані вільні радикали, пригнічувати окисне пошкодження біологічних молекул і посилювати антиоксидантний захист [73].
Цитиколін — природна сполука, яка, стабілізуючи клітинні мембрани та запобігаючи перекисному окисненню ліпідів, діє як антиоксидант [74]. Як і інші антиоксиданти, він продемонстрував ефективність на тваринних моделях шляхом зменшення об’єму ураження [75]. Однак дослідження ICTUS не показало його ефективності при гострому ішемічному інсульті середнього та тяжкого ступеня [76].
Едаравон являє собою ліпофільний поглинач вільних радикалів, який здатний поглинати супероксидні, гідроксильні та пероксидні радикали [77], він схвалений в Азії для лікування пацієнтів з гострим ішемічним інсультом з 2002 р. [23].
В експериментальних умовах едаравон зменшував активацію ММР-9 та спричинене r-tPA пошкодження гематоенцефалічного бар’єра [79], збільшуючи можливість подовження часового вікна для проведення тромболізису. Дійсно, у клінічному дослідженні едаравон покращував результати лікування пацієнтів з гострим ішемічним інсультом при застосуванні водночас з реперфузійною терапією, при цьому 80% хворих демонстрували «чудове» або «добре» одужання порівняно з особами, які отримували едаравон після альтеплази (стан пацієнтів оцінювали за модифікованою шкалою Ренкіна (Modified Rankin scale — mRS) та шкалою оцінки тяжкості інсульту Національних інститутів здоров’я CША (National Institutes of Health Stroke Scale — NIHSS)) [80]. Нещодавнє дослідження, яке охопило >10 тис. пацієнтів з гострим ішемічним інсультом, показало, що введення едаравону протягом 48 год після ендоваскулярної реваскуляризації асоційоване з більшою функціональною незалежністю під час виписки зі стаціонару, нижчою госпітальною летальністю та зменшенням внутрішньочерепної кровотечі [81].
Деградація вільних радикалів
Ебселен реагує з пероксинітритними радикалами та пригнічує глутатіонпероксидазоподібну активність [82]. У моделях інсульту у гризунів він зменшував розмір ураження і покращував відновлення, хоча при введенні після початку ішемії захисний ефект був більш помірним [83, 84]. У клінічних умовах 302 пацієнти, які отримували ебселен протягом 48 год від початку інсульту та продовжували лікування протягом 2 тиж, продемонстрували дещо кращий результат через 1 міс, але різниця між групою активного препарату та плацебо через 3 міс не досягла статистичної значущості [85].
Лубелузол інгібує глутамат-опосередкований шлях NOS, тим самим знижуючи рівні NO та продукцію пероксинітриту. У тваринних моделях він зменшував розмір інфаркту на 50% при введенні протягом 15 хв і на 1/3 — через 30 хв після початку ішемії. Однак у клінічних дослідженнях лубелузол не покращив результат і спричинив порушення серцевої провідності та подовження інтервалу Q–T [86–88].
Антиоксиданти, спрямовані на мітохондрії
Мітохондрії як основний генератор АФК при церебральній ішемії та реперфузійному пошкодженні можуть бути привабливою мішенню. Однак досягнення високих внутрішньоклітинних концентрацій антиоксидантів може виявитися складним завданням і передбачає кон’югацію молекули антиоксиданту з ліпофільним катіоном для сприяння дифузії через мітохондріальну мембрану [58, 89].
Встановлено, що ендогенний антиоксидант коензим Q10 не уповільнює прогресування хвороби Паркінсона, нейродегенеративного захворювання, патофізіологія якого значною мірою пов’язана з оксидативним стресом [90].
Інший антиоксидант, націлений на мітохондрії, Mito-Q10, здатний зменшувати мітохондріальне утворення АФК, а також захищати мітохондрії від окисного пошкодження, спричиненого перекисом водню [91]. Хоча його інтенсивно досліджували при серцево-судинних і нейродегенеративних захворюваннях, він не був оцінений при ішемічному інсульті.
Нові експериментальні підходи
Вдихання газів є привабливим методом, оскільки вони здатні швидко проникати через біологічні мембрани і дифундувати в цитозоль, мітохондрії і навіть ядро. Сприятливі ефекти з точки зору розміру інфаркту отримано за допомогою газоподібного водню при транзиторній оклюзії середньої мозкової артерії, нормобаричного кисню та інгаляцій NO [92].
Наразі оцінюються препарати, що активують Nrf2, такі як омавелоксолон та ауранофін.
Також показано, що активація SIRT 1 має нейропротекторний вплив при церебральному ішемічному/реперфузійному пошкодженні [93]. Ресвератрол активує сигнальні шляхи Sirt1-PGC-1α, а також експресію нейротрофічного фактора мозку (brain-derived neurotrophic factor), однак він має обмежену здатність перетинати гематоенцефалічний бар’єр [94].
Нещодавно визначено складні сигнальні каскади, що викликаються зв’язуванням гормону лептину з його рецепторами. Встановлено, що лептин пригнічує вивільнення пресинаптичного глутамату, сприяє мітохондріальному біогенезу, підвищує рівень супероксиддисмутази, а також має протизапальну дію [95].
МікроРНК є некодуючими РНК, які модулюють експресію генів на посттранскрипційному рівні. Встановлено, що деякі з них здатні пригнічувати апоптоз, інші — можуть модулювати пластичність мозку та нейрозапалення після ішемічного інсульту, сприяючи ангіогенезу, нейрогенезу, олігодендрогенезу та астрогенезу, а також покращують функціональне відновлення, якщо їх вводити в період подовженого часового вікна після ішемічного інсульту (від днів до місяців після інсульту) [96, 97].
Клінічні випробування із застосуванням стовбурових клітин показали, що така терапія є безпечною та сприяє значному функціональному покращенню [98].
Новий дизайн препаратів шляхом диспергування або розчинення лікарського засобу в полімерній матриці, захоплення препарату всередині ліпідних везикул, інкапсуляція або адсорбція активних молекул на поверхні наночастинок здатні покращити фармакокінетику, фармакодинаміку та безпеку ліків і запобігти нецільовим взаємодіям. Невеликий розмір наночастинок, стабільність, тривалий період напіврозпаду в сироватці крові та здатність проникати через гематоенцефалічний бар’єр роблять їх перспективним підходом до доставки антиоксидантів при гострому ішемічному інсульті [99].
Список використаної літератури
- 1. Feigin V.L., Lawes C.M., Bennett D.A. et al. (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol., 8: 355–369.
- 2. Danaei G., Finucane M.M., Lu Y. et al. (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980s: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet, 378: 31–40.
- 3. NCD Risk Factor Collaboration (NCD-RisC) (2016) Trends in adult body mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet, 387: 1377–1396.
- 4. Li L., Scott C.A., Rothwell P.M.; on behalf of the Oxford Vascular Study (2020) Trends in stroke incidence in high-income countries in the 21st century. Population-based study and systematic review. Stroke, 51: 1372–1380.
- 5. The National Institute of Neurological Disorders and Stroke rt-PA Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med., 333: 1581–1588.
- 6. Hacke W., Kaste M., Bluhmki E. et al. (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med., 359: 1317–1329.
- 7. Furlan A., Higashida R., Wechsler L. et al. (1999) Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: A randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA, 282: 2003–2011.
- 8. Alexandrov A.V., Köhrmann M., Soinne L. et al. (2019) Safety and efficacy of sonothrombolysis for acute ischaemic stroke: A multicentre, double-blind, phase 3, randomised controlled trial. Lancet Neurol., 18: 338–347.
- 9. Smith W.S., Sung G., Starkman S. et al. (2005) Safety and efficacy of mechanical embolectomy in acute ischemic stroke: Results of the MERCI trial. Stroke, 36: 1432–1438.
- 10. Powers W.J., Rabinstein A.A., Ackerson T. et al. (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 50: e344–e418.
- 11. De Sousa D.A., von Martial R., Abilleira S. et al. (2019) Access to and delivery of acute ischaemic stroke treatments: A survey of national scientific societies and stroke experts in 44 European countries. Eur. Stroke J., 4: 13–28.
- 12. Rha J.-H., Saver J.L. (2007) The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke, 38: 967–973.
- 13. Jurcau A., Ardelean I.A. (2021) Molecular pathophysiological mechanisms of ischemia/reperfusion injuries after recanalization therapy for acute ischemic stroke. J. Integr. Neurosci., 20: 727–744.
- 14. Pizzino G., Irrera N., Cucinotta M. et al. (2017) Oxidative stress: Harms and benefits for human health. Oxidative Med. Cell Longev, 2017: 8416763.
- 15. Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. (2012) Cell biology of ischemia/reperfusion injury. Int. Rev. Cell. Mol. Biol., 298: 229–317.
- 16. Simion A., Jurcau A. (2019) The role of antioxidant treatment in acute ischemic stroke: Past, present and future. Neurol. Res. Surg., 2: 1–7.
- 17. Cobley J.N., Fiorello M.L., Bailey D.M. (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol., 15: 490–503.
- 18. Jurcau A., Simion A. (2021) Cognition, Statins, and Cholesterol in Elderly Ischemic Stroke Patients: A Neurologist’s Perspective. Medicina, 57: 616.
- 19. Polidori C.M., Cherubini A., Stahl W. et al. (2002) Plasma carotenoid and malondialdehyde levels in ischemic stroke patients: Relationship to early outcome. Free Radic. Res., 36: 265–268.
- 20. Jurcau A. (2007) The role of antioxidant treatment in acute ischemic stroke: A clinical study. Rom. J. Neurol., 6: 181–188.
- 21. Menon B., Ramalingam K., Kumar R. (2020) Evaluating the Role of Oxidative Stress in Acute Ischemic Stroke. J., Neurosci. Rural Pract., 11: 156–159.
- 22. Sun M.-S., Jin H., Sun X. et al. (2018) Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy. Oxidative Med. Cell Longev., 2018: 3804979.
- 23. Li W., Yang S. (2016) Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circ., 2: 153–163.
- 24. Fucci L., Oliver C.N., Coon M.J., Stadtman E.R. (1983) Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implication in protein turnover and ageing. Proc. Natl. Acad. Sci. USA, 80: 1521–1525.
- 25. Hall E.D., Braughler J.M. (1989) Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals in lipid peroxidation. Free Radic. Biol. Med., 6: 303–313.
- 26. Cooke M.S., Evans M.D., Dizdaroglu M., Lunec J. (2003) Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J., 17: 1195–1214.
- 27. Saito A., Hayashi T., Okuno S. et al. (2005) Modulation of p53 degradation via MDM2-mediated ubiquitylation and the ubiquitin–proteasome system during reperfusion after stroke: Role of oxidative stress. J. Cereb. Blood Flow Metab., 25: 267–280.
- 28. Vaseva A.V., Marchenko N.D., Ji K. et al. (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell, 149: 1536–1548.
- 29. Davis R.J. (2000) Signal transduction by the JNK group of MAP kinases. Cell, 103: 239–252.
- 30. Song J., Cho K.J., Cheon S.Y. et al. (2013) Apoptosis signal-regulating kinase 1 (ASK1) is linked to neural stem cell differentiation after ischemic brain injury. Exp. Mol. Med., 45: e69.
- 31. Russo E., Nguyen H., Lippert T. et al. (2018) Mitochondrial targeting as novel therapy for stroke. Brain Circ., 4: 84–94.
- 32. Sanderson T.H., Reynolds C.A., Kumar R. et al. (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol. Neurobiol., 47: 9–23.
- 33. Ma S., Wang Y., Chen Y., Cao F. (2015) The role of autophagy in myocardial ischemia/reperfusion injury. Biochim. Biophys. Acta BBA Mol. Basis Dis., 1852: 271–276.
- 34. Fels J.A., Manfredi G. (2019) Sex differences in ischemia/reperfusion injury: The role of mitochondrial permeability transition. Neurochem. Res., 44: 2336–2345.
- 35. Chen X.-M., Chen H.-S., Xu M.-J., Shen J.-G. (2013) Targeting reactive nitrogen species: A promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol. Sin., 34: 67–77.
- 36. Pradeep H., Diya J.B., Shashikumar S., Rajanikat G.K. (2012) Oxidative stress-assassin behind the ischemic stroke. Folia Neuropathol., 50: 219–230.
- 37. Chang D.I., Hosomi N., Lucero J. et al. (2003) Activation systems for latent matrix metalloproteinase-2 are upregulated immediately after focal cerebral ischemia. J. Cereb. Blood Flow Metab., 23: 1408–1419.
- 38. Tang X.N., Cairns B., Kim J.Y., Yenari M.A. (2012) NADPH oxidase in stroke and cerebrovascular disease. Neurol. Res., 34: 338–345.
- 39. Suh S.W., Shin B.S., Ma H. et al. (2008) Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann. Neurol., 64: 654–663.
- 40. Suzuki G., Okamoto K., Kusano T. et al. (2015) Evaluation of neuronal protective effects of xanthine oxidoreductase inhibitors on severe whole-brain ischemia in mouse model and analysis of xanthine oxidoreductase activity in the mouse brain. Neurol. Med.-Chir., 55: 77–85.
- 41. Nishino T., Okamoto K., Eger B.T. et al. (2008) Mammalian xanthine oxidoreductase—Mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J., 275: 3278–3289.
- 42. Xu X., Zhang L., Ye X. et al. (2018) Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflamm. Res., 67: 57–65.
- 43. Liu L., Locascio L.M., Doré S. (2019) Critical role of Nrf2 in experimental ischemic stroke. Front. Pharmacol., 10: 153.
- 44. Nemoto S., Fergusson M.M., Finkel T. (2005) SIRT 1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem., 280: 16456–16460.
- 45. Kalaivani P., Ganesh M., Sathiya S. et al. (2014) Alteration in bioenergetic regulators, SirT1 and Parp1 expression precedes oxidative stress in rats subjected to transient cerebral focal ischemia: Molecular and histopathologic evidences. J. Stroke Cerebrovasc. Dis., 23: 2753–2766.
- 46. Khoury N., Koronowski K.B., Young J.I. et al. (2018) The NAD+-Dependent Family of Sirtuins in Cerebral Ischemia and Preconditioning. Antioxid. Redox Signal., 28: 691–710.
- 47. Sundaresan N.R., Gupta M., Kim G. et al. (2009) SIRT 3 blocks the cardiac hypertrophic response by augmenting FOXO3a-dependent antioxidant defense mechanisms in mice. J. Clin. Investig., 119: 2758–2771.
- 48. Tymianski M. (2017) Combining neuroprotection with endovascular treatment of acute stroke: Is there hope? Stroke, 48: 1700–1705.
- 49. Campbell B.C.V., Christensen S., Tress B.M. et al. (2013) Failure of collateral blood flow is associated with infarct growth in ischemic stroke. J. Cereb. Blood Flow Metab., 33: 1168–1172.
- 50. Dávalos A., Blanco M., Pedraza S. et al. (2004) The clinical-DWI mismatch: A new diagnostic approach to the brain tissue at risk of infarction. Neurology, 62: 2187–2192.
- 51. Schwartz R.H., Bayley M., Lanctôt K.L. et al. (2016) Post-stroke depression, obstructive sleep apnea, and cognitive impairment: Rationale for, and barriers to, routine screening. Int. J. Stroke, 11: 509–518.
- 52. Myint P.K., Luben R.N., Welch A.A. et al. (2008) Plasma vitamin C concentrations predict risk of incident stroke over 10 y in 20,649 participants of the European Prospective Investigation into Cancer-Norfolk prospective population study. Am. J. Clin. Nutr., 87: 64–69.
- 53. Zhang X.H., Lei H., Liu A.J. et al. (2011) Increased oxidative stress is responsible for severer cerebral infarction in stroke-prone spontaneously hypertensive rats. CNS Neurosci. Ther., 17: 590–598.
- 54. Ducruet A.F., Mack W.J., Mocco J. et al. (2011) Preclinical evaluation of postischemic dehydroascorbic acid administration in a large-animal stroke model. Transl. Stroke Res., 2: 399–403.
- 55. Rabadi M.H., Kristal B.S. (2007) Effect of vitamin C supplementation on stroke recovery: A case-control study. Clin. Interv. Aging, 2: 147–151.
- 56. Schürks M., Glynn R.J., Rist P.M. et al. (2010) Effects of vitamin E on stroke subtypes: Meta-analysis of randomised controlled trials. Br. J. Med., 341: c5702.
- 57. Serrander L., Cartier L., Bedard K. et al. (2007) Nox4 activity is determined by MRNA levels and reveals a unique pattern of ROS generation. Biochem. J., 406: 105–114.
- 58. Shirley R., Ord E.N.J., Work L.M. (2014) Oxidative stress and the use of antioxidants in stroke. Antioxidants, 3: 472–501.
- 59. Chen H., Song Y.S., Chan P.H. (2009) Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J. Cerebr. Blood Flow Metab., 29: 1262–1272.
- 60. Itoh T., Kawakami M., Yamauchi Y. et al. (1986) Effect of allopurinol on ischemia and reperfusion-induced cerebral injury in spontaneously hypertensive rats. Stroke, 17: 1284–1287.
- 61. Dawson J., Quinn T.J., Harrow C. et al. (2009) The effect of allopurinol on the cerebral vasculature of patients with subcortical stroke; a randomized trial. Br. J. Clin. Pharmacol., 68: 662–668.
- 62. Zhang J.-F., Zhang Y.-L., Wu Y.-C. (2018) The role of SIRT1 in ischemic stroke: Pathogenesis and therapeutic strategies. Front. Neurosci., 12: 833.
- 63. Panigrahi M., Sadguna Y., Shivakumar B.R. et al. (1996) Alpha-lipoic acid protects against reperfusion injury following cerebral ischemia in rats. Brain Res., 717: 184–188.
- 64. Choi K.-H., Park M.-S., Kim H.-S. et al. (2015) Alpha-lipoic acid treatment is neurorestorative and promotes functional recovery after stroke in rats. Mol. Brain, 8: 9.
- 65. Choi K.-H., Park M.-S., Kim J.-T. et al. (2016) Lipoic acid use and functional outcomes after thrombolysis in patients with acute ischemic stroke and diabetes. PLoS ONE, 11: e0163484.
- 66. Zhao Z., Cheng M., Maples K.R. et al. (2001) NXY-059, a novel free radical trapping compound, reduces cortical infarction after permanent focal cerebral ischemia in the rat. Brain Res., 909: 46–50.
- 67. Marshall J.W., Duffin K.J., Green A.R., Ridley R.M. (2001) NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species. Stroke, 32: 190–198.
- 68. Lees K.R., Zivin J.A., Ashwood T. et al. (2006) NXY-059 for acute ischemic stroke. N. Engl. J. Med., 354: 588–600.
- 69. Shuaib A., Lees K.R., Lyden P. et al. (2007) NXY-059 for the treatment of acute ischemic stroke. N. Engl. J. Med., 357: 562–571.
- 70. Sena E., Wheble P., Sandercock P., Macleod M. (2007) Systematic review and meta-analysis of the efficacy of tirilazad in experimental stroke. Stroke, 38: 388–394.
- 71. Tirilazad International Steering Committee (2000) Tirilazad mesylate in acute ischemic stroke: A systematic review. Stroke, 31: 2257–2262.
- 72. Khan M., Sekhon B., Jatana M. et al. (2004) Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J. Neurosci. Res., 76: 519–527.
- 73. Reiter R.J., Mayo J.C., Tan D.-X. et al. (2016) Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res., 61: 253–268.
- 74. Trovarelli G., de Medio G.E., Dorman R.V. et al. (1981) Effect of cytidine diphosphate choline (CDP-choline) on ischemia-induced alterations of brain lipid in the gerbil. Neurochem. Res., 6: 821–833.
- 75. Bustamante A., Giralt D., Garcia-Bonilla L. et al. (2012) Citicoline in pre-clinical animal models of stroke: A meat-analysis shows the optimal neuroprotective profile and the missing steps for jumping into a stroke clinical trial. J. Neurochem., 123: 217–225.
- 76. Dávalos A., Alvarez-Sabín J., Castillo J. et al. (2012) International Citicoline Trial on acUte Stroke (ICTUS) trial investigators. Citicoline in the treatment of acute ischaemic stroke: An international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet, 380: 349–357.
- 77. Higashi Y. (2009) Edaravone for the treatment of acute cerebral infarction: Role of endothelium-derived nitric oxide and oxidative stress. Exp. Opin. Pharmacother., 10: 323–331.
- 78. Miyamoto S., Ogasawara K., Kuroda S. et al. (2022) Japan Stroke Society Guideline 2021 for the Treatment of Stroke. Int. J. Stroke, 17(9): 1039–1041.
- 79. Lukic-Panin V., Deguchi K., Yamashita T. et al. (2010) Free radical scavenger edaravone administration protects against tissue plasminogen activator induced oxidative stress and blood brain barrier damage. Curr. Neurovasc. Res., 7: 319–329.
- 80. Kimura K., Aoki J., Sakamoto Y. et al. (2012) Administration of edaravone, a free radical scavenger, during t-PA infusion can enhance early recanalization in acute stroke patients — a preliminary study. J. Neurol. Sci., 313: 132–136.
- 81. Enomoto M., Yatsushige H., Fushimi K., Otomo Y. (2019) Clinical effects of early edaravone use in acute ischemic stroke patients treated by endovascular reperfusion therapy. Stroke, 50: 652–658.
- 82. Shirley R., Ord E.N.J., Work L.M. (2014) Oxidative stress and the use of antioxidants in stroke. Antioxidants, 3: 472–501.
- 83. Namura S., Nagata I., Takami S. et al. (2001) Ebselen reduces cytochrome c release from mitochondria and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke, 32: 1906–1911.
- 84. Takasago T., Peters E.E., Graham D.I. et al. (1997) Neuroprotective efficacy of ebselen, an anti-oxidant with anti-inflammatory actions, in a rodent model of permanent middle cerebral artery occlusion. Br. J. Pharmacol., 122: 1251–1256.
- 85. Yamaguchi T., Sano K., Takakura K. et al. (1998) Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke, 29: 12–17.
- 86. Lesage A.S., Peeters L., Leysen J.E. (1996) Lubeluzole, a novel long-term neuroprotectant, inhibits the glutamate-activated nitric oxide synthase pathway. J. Pharmacol. Exp. Ther., 279: 759–766.
- 87. Diener H.C., Cortens M., Ford G. et al. (2000) Lubeluzole in acute ischemic stroke treatment: A double-blind study with an 8-h inclusion window comparing a 10-mg daily dose of lubeluzole with placebo. Stroke, 31: 2543–2551.
- 88. Gandolfo C., Sandercock P., Conti M. (2002) Lubeluzole for acute ischaemic stroke. Cochrane Database Syst. Rev., CD001924.
- 89. Murphy M.P. (2014) Antioxidants as therapies: Can we improve on nature? Free Radic. Biol. Med., 66: 20–23.
- 90. Parkinson Study Group QE Investigators; Beal M.F., Oakes D., Shoulson I. et al. (2014) A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: No evidence of benefit. JAMA Neurol., 71: 543–552.
- 91. Plotnikov E.Y., Silachev D.N., Jankauskas S.S. et al. (2012) Mild uncoupling of respiration and phosphorylation as a mechanism providing nephronand neuroprotective effects of penetrating cations of the SkQ family. Biochemistry, 77: 1029–1037.
- 92. Ohsawa I., Ishikawa M., Takahashi K. et al. (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med., 13: 688–694.
- 93. Herskovits A.Z., Guarente L. (2014) SIRT1 in neurodevelopment and brain senescence. Neuron, 81: 471–483.
- 94. Shin J.A., Lee K.E., Kim H.S., Park E.M. (2012) Acute resveratrol treatment modulates multiple signaling pathways in the ischemic brain. Neurochem. Res., 37: 2686–2696.
- 95. Ray A., Cleary M.P. (2017) The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev., 38: 80–97.
- 96. Dabrowska S., Andrzejewska A., Lukomska B., Janowski M. (2019) Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J. Neuroinflamm., 16: 178.
- 97. Jurcau A., Simion A. (2022) Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int. J. Mol. Sci., 23: 14.
- 98. Hess D.C., Wechsler L.R., Clark W.M. et al. (2017) Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol., 16: 360–368.
- 99. Sandhir R., Yadav A., Sunkaria A., Singhal N. (2015) Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem. Int., 98: 209–226.
Інформація про автора:
Тончев Михайло Дмитрович — кандидат медичних наук, завідувач нейрохірургічного відділення КП «Полтавська обласна клінічна лікарня ім. М.В. Скліфосовського», Полтава, Україна. |
Information about the author:
Tonchev Mykhailo D. — Candidate of Medical Sciences, Head of the Neurosurgical Department of the CE «M.V. Sklifosovsky Poltava Regional Clinical Hospital», Poltava, Ukraine. |
Надійшла до редакції/Received: 31.03.2023
Прийнято до друку/Accepted: 28.04.2023