Current understanding of the biological and mechanical predictors of the formation of ankle osteoarthritis

March 16, 2023

Osteoarthritis is a pathological condition characterized by chronic progressive degenerative-dystrophic changes in all components of the joint — cartilage, subchondral bone, synovial membrane, ligaments, capsule, periarticular tissues. In recent years, more and more differences in the course of the disease have been noted depending on the localization of the degenerative-dystrophic process. The article analyzes the data of modern literature regarding the understanding of biological and mechanical predictors of the formation of ankle osteoarthritis. Despite the biomechanical prerequisites and the high frequency of joint injuries, clinically significant ankle osteoarthritis is less common than knee or hip osteoarthritis, that is obviously related to the anatomical, biochemical, and biomolecular features of the joint structure. In contrast to knee or hip osteoarthritis, which are widely researched, scientific works on the study of ankle osteoarthrosis are scarce. As a result of the analysis, specific differences in the etiopathogenesis of ankle osteoarthritis are followed, compared to the mechanisms of disease development in the knee and hip. Despite the high frequency of the traumatic genesis of the disease, the importance of the influence of other factors should not be overlooked. The identification of molecular and cellular pathogenetic mechanisms specific for ankle osteoarthritis requires further research, which will allow us to expand understanding of the mechanisms of disease formation, to develop prophylactic methods of prevention of progression.


  • 1. Bestwick-Stevenson T., Wyatt L.A., Palmer al. (2021) Incidence and risk factors for poor ankle functional recovery, and the development and progression of posttraumatic ankle osteoarthritis after significant ankle ligament injury (SALI): the SALI cohort study protocol. BMC Musculoskel. Dis., 22(1): 362.
  • 2. Godoy-Santos A.L., Fonseca L.F., de Cesar Netto C. et al. (2020) Ankle Osteoarthritis. Revista brasileira de ortopedia, 56(6): 689–696.
  • 3. Остеоартроз. Клінічна настанова (2017), 481 с.
  • 4. Deleu P.A., Leemrijse T., Chèze L. et al. (2021) Post-sprain versus post-fracture post-traumatic ankle osteoarthritis: Impact on foot and ankle kinematics and kinetics. Gait & posture, 86: 278–286.
  • 5. Jaleel A., Golightly Y.M., Alvarez C. et al. (2021) Incidence and progression of ankle osteoarthritis: The johnston county osteoarthritis project. Seminars in arthritis and rheumatism, 51(1): 230–235.
  • 6. Herrera-Pérez M., González-Martín D., Vallejo-Márquez M. et al. (2021) Ankle Osteoarthritis Aetiology. J. Clin. Med., 10(19): 4489.
  • 7. Herrera-Pérez M., Valderrabano V., Godoy-Santos A.L. et al. (2022) Ankle osteoarthritis: comprehensive review and treatment algorithm proposal. EFORT open reviews, 7(7): 448–459.
  • 8. Kraeutler M.J., Kaenkumchorn T., Pascual-Garrido C. et al. (2017) Peculiarities in Ankle Cartilage. Cartilage, 8: 12–18. doi: 10.1177/1947603516642572
  • 9. Lee S., Song K., Lee S.Y. (2022) Epidemiological study of post-traumatic ankle osteoarthritis after ankle sprain in 195,393 individuals over middle age using the National Health Insurance Database: A retrospective design. J. Sci. Med. Sport, 25(2): 129–133.
  • 10. Herzog M.M., Kerr Z.Y., Marshall S.W., Wikstrom E.A. (2019) Epidemiology of Ankle Sprains and Chronic Ankle Instability. J. Athlet. Train., 54(6): 603–610.
  • 11. Al Bimani S.A., Gates L.S., Warner M. et al. (2018) Characteristics of patients with ankle sprain presenting to an emergency department in the south of England (UK): a seven-month review. Int. Emerg. Nurs., 41: 38–44.
  • 12. Li J., Chen Z., Cheng Y. et al. (2022) Ligamentous injury-induced ankle instability causing posttraumatic osteoarthritis in a mouse model. BMC Musculoskel. Dis., 23(1): 223.
  • 13. Drakos M., Hansen O., Kukadia S. (2022) Ankle Instability. Foot and ankle clinics, 27(2): 371–384.
  • 14. Tassignon B., Verschueren J., Delahunt E. et al. (2019) Criteria-based return to sport decision-making following lateral ankle sprain injury: a systematic review and narrative synthesis. Sports Med., 49(4): 601–619.
  • 15. Paget L.D.A., Aoki H., Kemp S. et al. (2020) Ankle osteoarthritis and its association with severe ankle injuries, ankle surgeries and health-related quality of life in recently retired professional male football and rugby players: a cross-sectional observational study. BMJ open, 10(6): e036775.
  • 16. Kreitner K.F., Ferber A., Grebe P. et al. (1999) Injuries of the lateral collateral ligaments of the ankle: assessment with MR imaging. Eur. Radiol., 9(3): 519–524.
  • 17. Nwankwo E.C.Jr., Labaran L.A., Athas V. et al. (2019) Pathogenesis of Posttraumatic Osteoarthritis of the Ankle. Orthop. Clin. N. Am., 50: 529–537. doi: 10.1016/j.ocl.2019.05.008
  • 18. Nakasa T., Ikuta Y., Sumii J. et al. (2022) High-stress distribution in the lateral region of the subtalar joint in the patient with chronic lateral ankle instability. Arch. Orthopaed. Trauma Surg., 142(7): 1579–1587.
  • 19. Wang S., Liu P., Chen K. et al. (2022) Mouse model of subtalar post-traumatic osteoarthritis caused by subtalar joint instability. J. Orthopaed. Surg. Res., 17(1): 537.
  • 20. Jang J., Wikstrom E.A. (2022) Ankle joint contact force profiles differ between those with and without chronic ankle instability during walking. Gait & posture, 100: 1–7.
  • 21. Martijn H.A., Lambers K.T.A., Dahmen J. et al. (2021) High incidence of (osteo)chondral lesions in ankle fractures. Knee Surg. Sports Traumatol. Arthrosc., 29: 1523–1534. doi: 10.1007/s00167-020-06187-y
  • 22. Beak J.S., Kim Y.T., Lee S.H. (2022) Predisposing Factors for Posttraumatic Osteoarthritis After Malleolus Fracture Fixation in Patients Younger Than 50 Years. Foot & ankle international, 43(3): 389–397.
  • 23. Weigelt L., Laux C.J., Urbanschitz L. et al. (2020) Long-term Prognosis After Successful Nonoperative Treatment of Osteochondral Lesions of the Talus: An Observational 14-Year Follow-up Study. Orthopaed. J. Sports Med., 8(6): 1–7.
  • 24. McKinley T.O., Rudert M.J., Tochigi Y. et al. (2006) Incongruity-dependent changes of contact stress rates in human cadaveric ankles. J. Orthopaed. Trauma, 20(10): 732–738.
  • 25. Godoy-Santos A.L., Ranzoni L., Teodoro W.R. et al. (2017) Increased cytokine levels and histological changes in cartilage, synovial cells and synovial fluid after malleolar fractures. Injury, 48(4): S27–S33.
  • 26. Yi Y., Lee W. (2017) Peri-talar re-alignment osteotomy for joint preservation in asymmetrical ankle osteoarthritis. EFORT Open Rev., 2: 324–331. doi: 10.1302/2058-5241.2.160021
  • 27. Xie K., Jiang X., Han X. et al. (2018) Association between Knee Malalignment and Ankle Degeneration in Patients with End-Stage Knee Osteoarthritis. J. Arthroplast., 33: 3694–3698.e1. doi: 10.1016/j.arth.2018.08.015
  • 28. Kurokawa H., Kosugi S., Fujinuma T. et al. (2022) Evaluation of Subtalar Joint’s Compensatory Function in Varus Ankle Osteoarthritis Using Globally Optimal Iterative Closest Points (Go-ICP). Foot Ankle Orthopaed., 7(2): 1–6.
  • 29. Adams S.B., Leimer E.M., Setton L.A. et al. (2017) Inflammatory Microenvironment Persists After Bone Healing in Intra-articular Ankle Fractures. Foot Ankle Int., 38(5): 479–484.
  • 30. Adams S.B., Reilly R.M., Huebner J.L. et al. (2017) Time-Dependent Effects on Synovial Fluid Composition During the Acute Phase of Human Intra-articular Ankle Fracture. Foot Ankle Int., 38(10): 1055–1063.