Pharmacotherapeutic comparison of beta blockers (bisoprolol, carvedilol, nebivolol): focus on modern data of evidence-based medicine

September 13, 2022
1316
Resume

The active use of beta blockers in the treatment of patients with cardiovascular diseases determines the relevance of choosing the optimal drug. The purpose of this review is to compare the mechanism of action, pharmacological properties, and current evidence-based data on the ability of bisoprolol, carvedilol and nebivolol to influence mortality rates. The analysis of these indicators of two beta1 selective blockers (bisoprolol, nebivolol) and one non-cardioselective beta blocker (carvedilol) testifies to the benefit of the original bisoprolol. Due to the peculiarities of the mechanism of action and pharmacological characteristics, bisoprolol has a high affinity for cardiac beta1 adrenergic receptors, is devoid of the effect of first-pass metabolism through the liver, has high bioavailability (which does not depend on the characteristics and speed of metabolism) and clearance evenly distributed between the liver and kidneys, long half-life; bisoprolol does not affect respiratory resistance, carbohydrate and lipid metabolism, erectile function. All this does not have a significant negative effect on bronchial smooth muscles, ensures the predictable effect of bisoprolol on heart rate, blood pressure and provides round-the-clock anti-ischemic and antihypertensive protection. Bisoprolol can be prescribed once a day, recommended for patients with comorbid chronic obstructive pulmonary disease, diabetes, dyslipi­demia, obesity, and young men. The main argument in favor of bisoprolol is its ability to probably improve the survival of patients with hypertension, angina compared to other beta blockers.

References

  • 1. Francisco A.C., Awata W.M.C., Lima T.S. et al. (2022) Three Generation of β-Blockers for Atrial Fibrillation Treatment. Curr. Hypertens. Rev., 2022; 10.2174/1573402118666220609161044. doi:10.2174/1573402118666220609161044.
  • 2. Oliver E., Mayor F.Jr., D’Ocon P. (2019) Beta-blockers: Historical Perspective and Mechanisms of Action. Rev. Esp. Cardiol. (Engl. Ed.), 72(10): 853–862. doi:10.1016/j.rec.2019.04.006.
  • 3. de Lucia C., Eguchi A., Koch W.J. (2018) New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front. Pharmacol., 9: 904. doi:10.3389/fphar.2018.00904.
  • 4. Joseph P., Swedberg K., Leong D.P., Yusuf S. (2019) The Evolution of β-Blockers in Coronary Artery Disease and Heart Failure (Part 1/5). J. Am. Coll. Cardiol., 74(5): 672–682. doi:10.1016/j.jacc.2019.04.067.
  • 5. Masarone D., Martucci M.L., Errigo V., Pacileo G. (2021) The Use of β-Blockers in Heart Failure with Reduced Ejection Fraction. J. Cardiovasc. Dev. Dis., 8(9): 101. doi: 10.3390/jcdd8090101.
  • 6. AlHabeeb W., Mrabeti S., Abdelsalam A.A.I. (2021) Therapeutic Properties of Highly Selective β-blockers With or Without Additional Vasodilator Properties: Focus on Bisoprolol and Nebivolol in Patients With Cardiovascular Disease. Cardiovasc. Drugs Ther., 10.1007/s10557-021-07205-y. doi:10.1007/s10557-021-07205-y.
  • 7. Aune D., Sen A., ó’Hartaigh B. et al. (2017) Resting heart rate and the risk of cardiovascular disease, total cancer, and all-cause mortality — a systematic review and dose-response meta-analysis of prospective studies. Nutr. Metab. Cardiovasc. Dis., 27(6): 504–517. doi:10.1016/j.numecd.2017.04.004.
  • 8. Shang X., Lu R., Liu M. et al. (2017) Heart rate and outcomes in patients with heart failure with preserved ejection fraction: a dose-response meta-analysis. Medicine (Baltimore), 96(43): e8431. doi:10.1097/MD.0000000000008431.
  • 9. Xu S., Lin Y., Lin L. et al. (2022) Predictive Value of Increased Perioperative Heart Rate for All-Cause Mortality After Cardiac Surgery: A Systematic Review and Meta-Analysis. Biol. Res. Nurs., 24(3): 379–387. doi:10.1177/10998004221085986.
  • 10. Kotseva K., De Backer G., De Bacquer D. et al. (2019) Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 countries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. Eur. J. Prev. Cardiol., 26(8): 824–835. doi:10.1177/2047487318825350.
  • 11. Ferrari R., Ford I., Greenlaw N. et al. (2015) Geographical variations in the prevalence and management of cardiovascular risk factors in outpatients with CAD: Data from the contemporary CLARIFY registry. Eur. J. Prev. Cardiol., 22(8): 1056–1065. doi:10.1177/2047487314547652.
  • 12. Safi S., Sethi N.J., Korang S.K. et al. (2021) Beta-blockers in patients without heart failure after myocardial infarction. Cochrane Database Syst. Rev., 11(11): CD012565. doi:10.1002/14651858.CD012565.pub2.
  • 13. Klabunde R.E. (2021) Cardiovascular Physiology Concepts. New Third Edition. Published by Wolters Kluwer.
  • 14. Smith C., Teitler M. (1999) Beta-blocker selectivity at cloned human beta1– and beta2-adrenergic receptors. Cardiovasc. Drugs Ther., 13: 123–126.
  • 15. Sykes D.A., Jiménez-Rosés M., Reilly J. et al. (2022) Exploring the kinetic selectivity of drugs targeting the β1-adrenoceptor. Pharmacol. Res. Perspect., 10(4): e00978. doi:10.1002/prp2.978.
  • 16. Joseph P., Swedberg K., Leong D.P., Yusuf S. (2019) The Evolution of β-Blockers in Coronary Artery Disease and Heart Failure (Part 1/5). J. Am. Coll. Cardiol. 74(5): 672–682. doi:10.1016/j.jacc.2019.04.067.
  • 17. Toyoda S., Haruyama A., Inami S. et al. (2020) Effects of carvedilol vs bisoprolol on inflammation and oxidative stress in patients with chronic heart failure. J. Cardiol. 75(2): 140–147. doi:10.1016/j.jjcc.2019.07.011.
  • 18. Ågesen F.N., Weeke P.E., Tfelt-Hansen P., Tfelt-Hansen J.; for ESCAPE‐NET (2019) Pharmacokinetic variability of beta-adrenergic blocking agents used in cardiology. Pharmacol. Res. Perspect., 7(4): e00496. doi:10.1002/prp2.496.
  • 19. compendium.com.ua/dec/267935/1479-71570/.
  • 20. Janka H.U., Ziegler A.G., Disselhoff G., Mehnert H. (2019) Influence of bisoprolol on blood glucose, glucosuria, and haemoglobin A1 in noninsulin-dependent diabetics. J. Cardiovasc. Pharmacol., 8 Suppl. 11: S96–S99. doi:10.1097/00005344-198511001-00018.
  • 21. Kovacić D., Marinsek M., Gobec L. et al. (2008) Effect of selective and non-selective beta-blockers on body weight, insulin resistance and leptin concentration in chronic heart failure. Clin. Res. Cardiol., 97(1): 24–31. doi:10.1007/s00392-007-0571-3.
  • 22. Wang B., Song W.H., Liu G.Z.; Multi-center Cooperation Group of Bisoprolol (2005) Zhonghua Nei Ke Za Zhi, 44(7): 503–505.
  • 23. Zullo A.R., Hersey M., Lee Y. et al. (2018) Outcomes of «diabetes-friendly» vs «diabetes-unfriendly» β-blockers in older nursing home residents with diabetes after acute myocardial infarction. Diabetes Obes. Metab., 20(12): 2724–2732. doi: 10.1111/dom.13451.
  • 24. Agabiti R.E., Rizzoni D. (2007) Metabolic profile of nebivolol, a beta-adrenoceptor antagonist with unique characteristics. Drugs, 67(8): 1097–1107. doi:10.2165/00003495-200767080-00001.
  • 25. Ozyıldız A.G., Eroglu S., Bal U. et al. (2017) Effects of Carvedilol Compared to Nebivolol on Insulin Resistance and Lipid Profile in Patients With Essential Hypertension. J. Cardiovasc. Pharmacol. Ther., 22(1): 65–70. doi:10.1177/1074248416644987.
  • 26. Wai B., Kearney L.G., Hare D.L. et al. (2012) Beta blocker use in subjects with type 2 diabetes mellitus and systolic heart failure does not worsen glycaemic control. Cardiovasc. Diabetol., 11: 14. doi:10.1186/1475-2840-11-14.
  • 27. Huang K.Y., Tseng P.T., Wu Y.C. et al. (2021) Do beta-adrenergic blocking agents increase asthma exacerbation? A network meta-analysis of randomized controlled trials. Sci. Rep., 11(1): 452. doi:10.1038/s41598-020-79837-3.
  • 28. Cotton S., Devereux G., Abbas H. et al. (2022) Use of the oral beta blocker bisoprolol to reduce the rate of exacerbation in people with chronic obstructive pulmonary disease (COPD): a randomised controlled trial (BICS). Trials, 23(1): 307. doi:10.1186/s13063-022-06226-8.
  • 29. Davidov M., Singh S., Vlachakis N. (1994) Bisoprolol, a once-a-day beta-blocking agent for patients with mild to moderate hypertension. Clin. Cardiol., 17(5): 263–268.
  • 30. Foch C., Allignol A., Hohenberger T. et al. (2022) Effectiveness of bisoprolol versus other β-blockers and other antihypertensive classes: a cohort study in the Clinical Practice Research Datalink. J. Comp. Eff. Res., 11(6): 423–436. doi:10.2217/cer-2021-0305.
  • 31. Paolillo S., Dell’Aversana S., Esposito I. et al. (2021) The use of β-blockers in patients with heart failure and comorbidities: Doubts, certainties and unsolved issues. Eur. J. Intern. Med., 88: 9–14. doi:10.1016/j.ejim.2021.03.035.
  • 32. CIBIS Investigators and Committees (1994) A randomized trial of betablockade in heart failure. The Cardiac Insufciency Bisoprolol Study (CIBIS). Circulation, 90: 1765–1773.
  • 33. CIBIS Investigators (1999) The Cardiac Insufciency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet, 353: 9–13.
  • 34. Dargie H.J. (2000) Design and methodology of the CAPRICORN trial — a randomised double blind placebo controlled study of the impact of carvedilol on morbidity and mortality in patients with left ventricular dysfunction after myocardial infarction. Eur. J. Heart Fail., 2(3): 325–332. doi:10.1016/s1388-9842(00)00098-2.
  • 35. Witte K., Thackray S., Clark A.L. et al. (2000) Clinical trials update: IMPROVEMENT-HF, COPERNICUS, MUSTIC, ASPECT-II, APRICOT and HEART. Eur. J. Heart Fail., 2(4): 455–460. doi:10.1016/s1388-9842(00)00127-6.
  • 36. Flather M.D., Shibata M.C., Coats A.J. et al., for the SENIORS Investigators (2005) Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur. Heart J., 26: 215–25.
  • 37. Sabidó M., Hohenberger T., Grassi G. (2018) Pharmacological intervention in hypertension using beta-blockers: Real-world evidence for long-term effectiveness. Pharmacol. Res., 130: 191–197. doi:10.1016/j.phrs.2018.01.010.
  • 38. Sabidó M., Thilo H., Guido G. (2019) Long-term effectiveness of bisoprolol in patients with angina: a real-world evidence study. Pharmacol. Res., 139: 106–112. doi:10.1016/j.phrs.2018.10.031.