The influence of the Western diet on the development of atherosclerosis

February 11, 2022
937
Resume

To determine the cause-and-effect relationship between Western diet long-term adherence and atherosclerosis (AS) development. Diet is a leading lifestyle characteristic. Healthy diet violation is an important etiological factor in the most chronic diseases, including AS. AS is a chronic inflammatory disease that affects the walls of arteries and characterized by the progressive accumulation of lipids and inflammatory cells under the large arteries intima. At present, much attention is paid to the factors of cardiometabolic risk of occurrence and progression of AS as a polyetiological disease, especially in unhealthy lifestyles, including eating disorders. Today the Western diet (also called meat–sweet) is one of the leading dietary patterns in developed and some developing countries. The pathogenetic effect of such a diet is explained by its effect directly on the state of the intestinal microbiome and the imbalance of macro- and micronutrients. First, long-term adherence to the Western diet leads to the development of intestinal dysbiosis by increasing the content of gram-negative microorganisms, opportunistic pathogens. In addition, this diet is characterized by excessive consumption of saturated fatty acids, cholesterol, simple sugars, refiners, ω-6 fatty acids, sodium, gluten and insufficient content of some vitamins and trace elements, namely vitamins A, D, B12 and K2, magnesium, chromium, polyunsaturated fatty acids, etc. It has been shown that dietary changes can reduce the risk of cardiovascular events by approximately 80%. It is especially important for everyone in modern conditions to follow the principles of healthy eating to prevent AS.

References

  • 1. Torres N., Guevara-Cruz M., Velázquez-Villegas L., Tovar, A. (2015) Nutrition and Atherosclerosis. Arch. Med. Res., 46(5): 408–426. doi: 10.1016/j.arcmed.2015.05.010
  • 2. Falk E. (2006) Pathogenesis of Atherosclerosis. J. Am. Coll. Cardiol., 47(8): C7–C12. doi: 10.1016/j.jacc.2005.09.068.
  • 3. Zhu Y., Xian X., Wang Z. et al. (2018). Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules, 8(3): 80. doi: 10.3390/biom8030080.
  • 4. Mach, F., Baigent, C., Catapano, A. et al. (2019). 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J., 41(1): 111–188. doi: 10.1093/eurheartj/ehz455.
  • 5. Nazni P. (2014) Association of western diet & lifestyle with decreased fertility. Indian J. Med. Res., 140(Suppl. 1): S78–S81.
  • 6. Murphy C., Byrne J., Keogh J. et al. (2021) The Acute Effect of Magnesium Supplementation on Endothelial Function: A Randomized Cross-Over Pilot Study. Int. J. Envir. Res. Public Health, 18(10): 5303. doi: 10.3390/ijerph18105303.
  • 7. Filippou C., Tsioufis C., Thomopoulos C. et al. (2020) Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutrition, 11(5): 1150–1160. doi: 10.1093/advances/nmaa041.
  • 8. Galbete C., Kröger J., Jannasch F. et al. (2018) Nordic diet, Mediterranean diet, and the risk of chronic diseases: the EPIC-Potsdam study. BMC Med., 16(1). doi: 10.1186/s12916-018-1082-y.
  • 9. Christ A., Lauterbach M., Latz E. (2019) Western Diet and the Immune System: An Inflammatory Connection. Immunity, 51(5): 794–811. doi: 10.1016/j.immuni.2019.09.020.
  • 10. Bibbò S., Ianiro G. Giorgio V. et al. (2016) The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci., 20(22): 4742–4749.
  • 11. Myles I. (2014) Fast food fever: reviewing the impacts of the Western diet on immunity. Nutrition J., 13(61). doi: 10.1186/1475-2891-13-61.
  • 12. Shively C., Appt S., Vitolins M. et al. (2019) Mediterranean versus Western Diet Effects on Caloric Intake, Obesity, Metabolism, and Hepatosteatosis in Nonhuman Primates. Obesity, 27(5): 777–784. doi: 10.1002/oby.22436.
  • 13. Ruiz-Núñez B., Dijck-Brouwer D., Muskiet F. (2016) The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J. Nutr. Biochem., 36: 1–20. doi: 10.1016/j.jnutbio.2015.12.007.
  • 14. Islam M., Amin M., Siddiqui S. et al. (2019) Trans fatty acids and lipid profile: A serious risk factor to cardiovascular disease, cancer and diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(2): 1643–1647. doi: 10.1016/j.dsx.2019.03.033.
  • 15. Püschel G., Henkel J. (2018) Dietary cholesterol does not break your heart but kills your liver. Porto Biomedical J., 3(1): e12. doi: 10.1016/j.pbj.0000000000000012.
  • 16. Chaplin A., Carpéné C., Mercader J. (2018) Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients, 10(11): 1651. doi: 10.3390/nu10111651.
  • 17. Farrell G., Schattenberg J., Leclercq I. et al. (2019) Mouse Models of Nonalcoholic Steatohepatitis: Toward Optimization of Their Relevance to Human Nonalcoholic Steatohepatitis. Hepatology, 69(5): 2241–2257. doi: 10.1002/hep.30333.
  • 18. Khan S., Waliullah S., Godfrey V. et al. (2020) Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci. Transl. Med., 12(567): eaay6218. doi: 10.1126/scitranslmed.aay6218.
  • 19. Martinez K., Leone V., Chang, E. (2017) Western diets, gut dysbiosis, and metabolic diseases: Are they linked? Gut Microbes, 8(2): 130–142. doi: 10.1080/19490976.2016.1270811.
  • 20. Kim Y., Keogh J., Clifton P. (2016) Differential Effects of Red Meat/Refined Grain Diet and Dairy/Chicken/Nuts/Whole Grain Diet on Glucose, Insulin and Triglyceride in a Randomized Crossover Study. Nutrients, 8(11): 687. doi: 10.3390/nu8110687.
  • 21. Vanegas S., Meydani M., Barnett J. et al. (2017) Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am. J. Clin. Nutr., 105(3): 635–650. doi: 10.3945/ajcn.116.146928.
  • 22. Gaesser G. (2019) Perspective: Refined Grains and Health: Genuine Risk, or Guilt by Association? Advances In Nutrition, 10(3): 361–371. doi: 10.1093/advances/nmy104.
  • 23. Innes J., Calder P. (2018) Omega-6 fatty acids and inflammation. Prostaglandins, Leukotrienes And Essential Fatty Acids, 132: 41–48. doi: 10.1016/j.plefa.2018.03.004.
  • 24. Simopoulos A. (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8): 365–379. doi: 10.1016/s0753-3322(02)00253-6.
  • 25. Patterson E., Wall R., Fitzgerald G. et al. (2012) Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids. J. Nutr. Metabol., 2012: 1–16. doi: 10.1155/2012/539426.
  • 26. Biesiekierski J. (2017) What is gluten? J. Gastroenterol. Hepatol., 32: 78–81. doi: 10.1111/jgh.13703.
  • 27. Kumar J., Kumar M., Pandey R., Chauhan N. (2017) Physiopathology and Management of Gluten-Induced Celiac Disease. J. Food Sci., 82(2): 270–277. doi: 10.1111/1750-3841.13612.
  • 28. Lexhaller L. (2019) Comprehensive Detection of Isopeptides between Human Tissue Transglutaminase and Gluten Peptides. Nutrients, 11(10): 2263. doi: 10.3390/nu11102263.
  • 29. Sanchez-Lozada L., Rodriguez-Iturbe B., Kelley E. et al. (2020) Uric Acid and Hypertension: An Update With Recommendations. Am. J. Hypertens., 33(7): 583–594. doi: 10.1093/ajh/hpaa044.
  • 30. Bove M., Cicero A., Veronesi M., Borghi C. (2017) An evidence-based review on urate-lowering treatments: implications for optimal treatment of chronic hyperuricemia. Vascular Health And Risk Management, 13: 23–28. doi: 10.2147/vhrm.s115080.
  • 31. Koeth R., Lam-Galvez B., Kirsop J. et al. (2018) l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J. Clin. Invest., 129(1): 373–387. doi: 10.1172/jci94601.
  • 32. Koeth R., Wang Z., Levison B. et al. (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Med., 19(5): 576–585. doi: 10.1038/nm.3145.
  • 33. Ding L., Chang M., Guo Y. et al. (2018) Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids In Health And Disease, 17(1). doi: 10.1186/s12944-018-0939-6.
  • 34. Verhaar B., Prodan A., Nieuwdorp M., Muller M. (2020) Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients, 12(10): 2982. doi: 10.3390/nu12102982.
  • 35. Zhu Y., Li, Q., Jiang H. (2020) Gut microbiota in atherosclerosis: focus on trimethylamine N‐oxide. APMIS, 128(5): 353–366. doi: 10.1111/apm.13038.
  • 36. Hasegawa S., Ichiyama T., Sonaka I. et al. (2012) Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clin. Experiment. Immunol., 167(2): 269–274. doi: 10.1111/j.1365-2249.2011.04519.x.
  • 37. Tanimoto A., Sasaguri Y., Ohtsu H. (2006) Histamine Network in Atherosclerosis. Trends In Cardiovasc. Med., 16(8): 280–284. doi: 10.1016/j.tcm.2006.06.001.
  • 38. Halder M., Petsophonsakul P., Akbulut A. et al. (2019) Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. Int. J. Mol. Sci., 20(4): 896. doi: 10.3390/ijms20040896.
  • 39. Lang U., Beglinger C., Schweinfurth N. et ak. (2015) Nutritional Aspects of Depression. Cellular Physiol. Biochem., 37(3): 1029–1043. doi: 10.1159/000430229.
  • 40. Maresz K. (2015) Proper Calcium Use: Vitamin K2 as a Promoter of Bone and Cardiovascular Health. Integr. Med. (Encinitas), 14(1): 34–39.
  • 41. Riccio P., Rossano R. (2017) Diet, Gut Microbiota, and Vitamins D+A in Multiple Sclerosis. Neurotherapeutics, 15(1): 75–91. doi: 10.1007/s13311-017-0581-4.
  • 42. Schwalfenberg G., Genuis S. (2017) The Importance of Magnesium in Clinical Healthcare. Scientifica, 2017: 1–14. doi: 10.1155/2017/4179326.
  • 43. Soliman G. (2019) Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients, 11(5): 1155. doi: 10.3390/nu11051155.
  • 44. Hijová E., Bertková I., Štofilová J. (2019) Dietary fibre as prebiotics in nutrition. Centr. Eur. J. Public Health, 27(3): 251–255. doi: 10.21101/cejph.a5313.
  • 45. Dawson M. (2000) The Importance of Vitamin A in Nutrition. Curr. Pharm. Design, 6(3): 311–325. doi: 10.2174/1381612003401190.
  • 46. Kadri A., Sjahrir H., Sembiring R., Ichwan M. (2020) Combination of vitamin A and D supplementation for ischemic stroke: effects on interleukin-1ß and clinical outcome. Med. Glas .(Zenica), 17(2): 425–432. doi: 10.17392/1137-20.
  • 47. Ravn H., Korsholm T., Falk E. (2001) Oral magnesium supplementation induces favorable antiatherogenic changes in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol., 21: e858–e862.
  • 48. Rosanoff A., Seelig M. (2004) Comparison of Mechanism and Functional Effects of Magnesium and Statin Pharmaceuticals. J. Am. Coll. Nutr., 23(5): 501S–505S. doi: 10.1080/07315724.2004.10719389.
  • 49. Maier J. (2011) Endothelial cells and magnesium: implications in atherosclerosis. Clin. Sci., 122(9): 397–407. doi: 10.1042/cs20110506.
  • 50. Fanni D., Gerosa C., Nurchi V. et al. (2021) Trace elements and the carotid plaque: the GOOD (Mg, Zn, Se), the UGLY (Fe, Cu), and the BAD (P, Ca)? Eur. Rev. Med. Pharmacol. Sci., 25(10): 3772–3790. doi: 10.26355/eurrev_202105_25945.
  • 51. Schutten J., Joris P., Mensink R. et al. (2019) Effects of magnesium citrate, magnesium oxide and magnesium sulfate supplementation on arterial stiffness in healthy overweight individuals: a study protocol for a randomized controlled trial. Trials, 20(1). doi: 10.1186/s13063-019-3414-4.
  • 52. Jenkins D., Spence J., Giovannucci E. et al. (2018) Supplemental Vitamins and Minerals for CVD Prevention and Treatment. J. Am. Coll. Cardiol., 71(22): 2570–2584. doi: 10.1016/j.jacc.2018.04.020.
  • 53. Kodentsova V., Mendel O., Khotimchenko S. et al. (2017) Physiological needs and effective doses of vitamin D for deficiency correction. Current state of the problem. Voprosypitaniia [Problems of Nutrition], 86(2): 47–62. (in Rus.).
  • 54. Latic N., Erben R. (2020) Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int. J. Mol. Sci., 21(18): 6483. doi: 10.3390/ijms21186483.
  • 55. Rodrigues I., Pinho C., Sobral Filho D. et al. (2021) The impact of visceral fat and levels of vitamin D on coronary artery calcification. Rev. Da Assoc. Méd. Bras., 67(1): 88–93. doi: 10.1590/1806-9282.67.01.20200388.
  • 56. Yaylali G., Dedeoglu O., Topsakal S. et al. (2021) Relationships among Bone Metabolic Markers, Body Fat Composition and Carotid Intima-Media Thickness in Premenopausal Obese Women Acta Med Okayama, 75(3): 373–379. doi: 10.18926/AMO/62233.
  • 57. Foroughinia F., Mirjalili M. (2020) Association between Serum Vitamin D Concentration Status and Matrix Metalloproteinase-9 in Patients Undergoing Elective Percutaneous Coronary InterventionIran. J. Pharm. Res., 19(4): 135–142. doi: 10.22037/ijpr.2020.112292.13670.
  • 58. Zittermann A., Trummer C., Theiler-Schwetz V. et al. (2021) Vitamin D and Cardiovascular Disease: An Updated Narrative Review. Int. J. Mol. Sci., 22(6): 2896. doi: 10.3390/ijms22062896.
  • 59. Izzo M., Carrizzo A., Izzo C. et al. (2021) Vitamin D: Not Just Bone Metabolism but a Key Player in Cardiovascular Diseases. Life, 11(5): 452. doi: 10.3390/life11050452.
  • 60. Sokol S., Srinivas V., Crandall J. et al. (2012) The effects of vitamin D repletion on endothelial function and inflammation in patients with coronary artery disease. Vasc. Med., 17(6): 394–404. doi: 10.1177/1358863×12466709.
  • 61. Witham M., Dove F., Khan F. et al. (2013) Effects of Vitamin D supplementation on markers of vascular function after myocardial infarction — A randomised controlled trial. Int. J. Cardiol., 167(3): 745–749. doi: 10.1016/j.ijcard.2012.03.054.
  • 62. Florea A., Kooi M., Mess W. et al. (2021) Effects of Combined Vitamin K2 and Vitamin D3 Supplementation on Na[18F]F PET/MRI in Patients with Carotid Artery Disease: The INTRICATE Rationale and Trial Design. Nutrients, 13(3): 994. doi: 10.3390/nu13030994.
  • 63. Mozos I., Stoian D., Luca C. (2017) Crosstalk between Vitamins A, B12, D, K, C, and E Status and Arterial Stiffness. Disease Markers, 2017: 1–14. doi: 10.1155/2017/8784971.
  • 64. El Asmar M., Naoum J., Arbid E. (2014) Vitamin K Dependent Proteins and the Role of Vitamin K2 in the Modulation of Vascular Calcification: A Review. Oman Med. J., 29(3): 172–177. doi: 10.5001/omj.2014.44.
  • 65. Bar A., Kus K., Manterys A. et al. (2019) Vitamin K2-MK-7 improves nitric oxide-dependent endothelial function in ApoE/LDLR-/-mice. Vasc. Pharmacol., 122–123, 106581. doi: 10.1016/j.vph.2019.106581.
  • 66. Shioi A., Morioka T., Shoji T., Emoto M. (2020) The Inhibitory Roles of Vitamin K in Progression of Vascular Calcification. Nutrients, 12(2): 583. doi: 10.3390/nu12020583.
  • 67. Zinöcker M., Lindseth I. (2018) The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients, 10(3): 365. doi: 10.3390/nu10030365.
  • 68. Carracedo M., Artiach G., Arnardottir H., Bäck M. (2019) The resolution of inflammation through omega-3 fatty acids in atherosclerosis, intimal hyperplasia, and vascular calcification. Seminars In Immunopathology, 41(6): 757–766. doi: 10.1007/s00281-019-00767-y.
  • 69. Zehr K., Walker M. (2018) Omega-3 polyunsaturated fatty acids improve endothelial function in humans at risk for atherosclerosis: A review. Prostaglandins & Other Lipid Mediators, 134: 131–140. doi: 10.1016/j.prostaglandins.2017.07.005.
  • 70. Spence J. (2019) Nutrition and Risk of Stroke. Nutrients, 11(3): 647. doi: 10.3390/nu11030647.