Intravenous 5-lipoxygenase inhibitor quercetin prevents the development of intramyocardial hemorrhage in timely revascularized patients with STEMI

October 12, 2021
752
Specialities :
Resume

The aim of the study: to evaluate the efficacy of the intravenous 5-lipoxygenase inhibitor quercetin for the prevention of microvascular obstruction (MVO), intramyocardial hemorrhage (IMH) and reperfusion myocardial injury in timely revascularized patients with STEMI.

Methods. We examined 37 patients with the first acute anterior STEMI who were admitted in the first 6 hours after symptoms onset. Patients were divided into two groups: group 1 — 18 patients, who in addition to standard acute myocardial infarction therapy were treated by intravenous quercetin (Corvitin®, PJSC SIC «Borshchahivskiy CPP», Ukraine) and group 2 — 19 patients with standard therapy. Magnetic resonance imaging (MRI) was performed on day 3–4 and 3 months after STEMI development on a «Vantage Titan 1.5T» MR tomograph («Toshiba», Japan) in standard projections. The presence of MVO was assessed in the early gadolinium enhancement (EGE) phase, and T2-weighted images were used to detect IMH. The area of myocardial infarction (postinfarction fibrosis) was assessed in late gadolinium enhancement phase in 90 days.

Results. The signs of MVO in the phase of EGE on day 3–4 were detected in 22 (91.7%) of 24 patients (p>0.05, when compared between groups). IMH was determined in 9 (37.5%) patients: 1 (11.1%) patient in quercetin group vs 8 (53.3%) patients in control group; p=0.024. No significant difference in the final size of myocardial infarction (postinfarction fibrosis zone) according to cardioMRI after 3 months of follow-up between patients of the two groups was detected.

Conclusions. Addition of intravenous quercetin (started before revascularization) to standard baseline myocardial infarction treatment was associated with a reduced likelihood of IMH development after primary percutaneous coronary intervention in patients with STEMI.

References

  • 1. Parkhomenko A.N., Kozhukhov S.N., Irkin O.I. et al. (2000) Cardioprotective effects of 5-lipoxigenase inhibitor quercetine in thrombolysed patients with acute myocardial infarction.XXII Congress of the European Society of Cardiology. Amsterdam (The Netherlands). Eur. Heart J., 21. (Suppl.): 476.
  • 2. Parkhomenko A.N., Irkin O.I., Kozhukhov S.N. (2002) Possibilities of pharmacological protection of the myocardium in ischemia-reperfusion syndrome in experiment and clinical practice. Liki Ukrainy, 7–8: 2–11.
  • 3. http://www.drlz.com.ua/ibp/ddsite.nsf/all/shlz1?opendocument&stype=98F14594FDE8B386C22586A700471AC2.
  • 4. Ibanez B., James S., Agewall S. et al. (2018) 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J., 39(2): 119–177. doi: 10.1093/eurheartj/ehx393.
  • 5. Mahnken A.H., Gunther R.W., Krombach G. (2006) Contrast-enhanced MR and MSCT for the assessment of myocardial viability. RoeFo, 178(8): 771–780.
  • 6. Gupta A., Lee V.S., Chung Y.C. et al. (2004) Myocardial infarction: optimization of inversion times at delayed contrast-enhanced MR imaging. Radiology, 233: 921–926.
  • 7. Kellman P., Arai A.E., McVeigh E.R., Aletras A.H. (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn. Reson. Med., 47: 372–383.
  • 8. Lang R.M., Bierig M., Devereux R.B. et al. (2006) Recommendations for chamber quantification. Eur. J. Echocardiography, 7: 79–108. doi: 10.1016/j. echo.2005.10.005.
  • 9. StatSoft Inc. (2004) STATISTICA (data analysis software system), v. 7. http://www.statsoft.com
  • 10. Friedrich M.G. (2008) Tissue characterization of acute myocardial infarction and myocarditis by cardiac magnetic resonance. JACC Cardiovasc. Imaging., 1(5): 652–662. doi: 10.1016/j.jcmg.2008.07.011.
  • 11. Basuk W.L., Reimer K.A., Jennings R.B. (1986) Effect of repetitive brief episodes of ischemia on cell volume, electrolytes and ultrastructure. J. Am. Coll. Cardiol., 8: 33A–41A.
  • 12. Abdel-Aty H., Cocker M., Meek C. et al. (2009) Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J. Am. Coll. Cardiol., 53: 1194–1201.
  • 13. Reimer K.A., Jennings R.B. (1979) The changing anatomic reference base of evolving myocardial infarction. Circulation, 60: 866–876.
  • 14. Higgins C.B., Herfkens R., Lipton M.J. et al. (1983) Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am. J. Cardiol., 52: 184–188.
  • 15. Abdel-Aty H., Simonetti O., Friedrich M.G. (2007) T2-weighted cardiovascular magnetic resonance imaging. J. Magn. Reson. Imaging, 26: 452–459.
  • 16. Arai A.E. (2012) Magnetic resonance imaging for area at risk, myocardial infarction, and myocardial salvage. J. Cardiovasc. Pharmacol. Ther., 16: 313–320.
  • 17. García-Dorado D., Oliveras J., Gili J. et al. (1993) Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc. Res., 27: 1462–1469.
  • 18. Aletras A.H., Tilak G.S., Natanzon A. et al. (2006) Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2­weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation, 113: 1865–1870.
  • 19. Carlsson M., Ubachs J.F., Hedström E. et al. (2009) Myocardium at risk after acute infarction in humans on cardiac magnetic resonance: quantitative assessment during follow­up and validation with single­photon emission computed tomography. JACC Cardiovasc. Imaging, 2: 569–576.
  • 20. Jugdutt B.I. (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation, 108(11): 1395–1403.
  • 21. Mahrholdt H., Wagner A., Holly T.A. et al. (2002) Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation, 106: 2322–2327.
  • 22. Petersen S.E., Mohrs O.K., Horstick G. et al. (2004) Influence of contrast agent dose and image acquisition timing on the quantitative determination of nonviable myocardial tissue using delayed contrast-enhanced magnetic resonance imaging. J. Cardiovasc. Magn. Reson., 6: 541–548.
  • 23. Bogaert J., Dymarkowski S. (2005) Delayed contrast-enhanced MRI: use in myocardial viability assessment and other cardiac pathology. Eur. Radiol., 15(suppl. 2): 52–58.
  • 24. Caravan P., Das B., Dumas S. et al. (2007) Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew. Chem. Int. Ed., 46(43): 8171–8173.
  • 25. Masci P.G., Bogaert J. (2012) Post myocardial infarction of the left ventricle: the course ahead seen by cardiac MRI. Cardiovasc. Diagn. Ther., 2: 113–127.
  • 26. Engblom H., Hedström E., Heiberg E. et al. (2009) Rapid initial reduction of hyperenhanced myocardium after reperfused first myocardial infarction suggests recovery of the peri-infarction zone. One-year follow-up by MRI. Circ. Cardiovasc. Imaging, 2: 47–55.
  • 27. Wu E., Ortiz J.T., Tejedor P. et al. (2008) Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart, 94: 730–736.
  • 28. Ripa R.S., Nilsson J.C., Wang Y. et al. (2007) Short- and long-term changes in myocardial function, morphology, edema, and infarct mass after ST segment elevation myocardial infarction evaluated by serial magnetic resonance imaging. Am. Heart J., 154: 929–936.
  • 29. Hombach V., Grebe O., Merkle N. et al. (2005) Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur. Heart J., 26: 549–557.
  • 30. Judd R.M., Lugo-Olivieri C.H., Arai M. et al. (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts.Circulation, 92: 1902–1910.
  • 31. Lima J.A., Judd R.M., Bazille A. et al. (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrastenhanced MRI. Potential mechanisms. Circulation, 92: 1117–1125.
  • 32. Wu K.C. (2012) CMR of microvascular obstruction and hemorrhage in myocardial infarction. J. Cardiovasc. Magn. Reson., 4: 68.
  • 33. Khan J.N., McCann G.P. (2017) Cardiovascular magnetic resonance imaging assessment of outcomes in acute myocardial infarction. World J. Cardiol., 9(2): 109–133.
  • 34. Nijveldt R., van der Vleuten P.A., Hirsch A. et al. (2009) Early electrocardiographic findings and MR imaging-verified microvascular injury and myocardial infarct size. JACC Cardiovasc. Imaging, 2: 1187–1194.
  • 35. Klug G., Mayr A., Schenk S. et al. (2012) Prognostic value at 5 years of microvascular obstruction after acute myocardial infarction assessed by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson., 14: 46.
  • 36. Ghugre N.R., Ramanan V., Pop M. et al. (2011) Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI. Magn. Reson. Med., 66: 1129–1141.
  • 37. Mather A.N., Fairbairn T.A., Artis N.J. et al. (2011) Timing of cardiovascular MR imaging after acute myocardial infarction: effect on estimates of infarct characteristics and prediction of late ventricular remodeling. Radiology, 261: 116–126.
  • 38. de Waha S., Desch S., Eitel I. et al. (2010) Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur. Heart J., 31: 2660–2668.
  • 39. Wong D.T., Leung M.C., Richardson J.D. et al. (2012) Cardiac magnetic resonance derived late microvascular obstruction assessment post ST-segment elevation myocardial infarction is the best predictor of left ventricular function: a comparison of angiographic and cardiac magnetic resonance derived measurements. Int. J. Cardiovasc. Imaging, 28: 1971–1981.
  • 40. Weir R.A., Murphy C.A., Petrie C.J. et al. (2010) Microvascular obstruction remains a portent of adverse remodeling in optimally treated patients with left ventricular systolic dysfunction after acute myocardial infarction. Circ. Cardiovasc. Imaging, 3: 360–367.
  • 41. Bekkers S.C., Smulders M.W., Passos V.L. et al. (2010) Clinical implications of microvascular obstruction and intramyocardial haemorrhage in acute myocardial infarction using cardiovascular magnetic resonance imaging. Eur. Radiol., 20: 2572–2578.
  • 42. Russo J.J., Wells G.A., Chong A.Y. et al. (2015) Safety and Efficacy of Staged Percutaneous Coronary Intervention During Index Admission for ST-Elevation Myocardial Infarction With Multivessel Coronary Disease (Insights from the University of Ottawa Heart Institute STEMI Registry). Am. J. Cardiol., 116: 1157–1162.
  • 43. Lotan C.S., Bouchard A., Cranney G.B. et al. (1992) Assessment of postreperfusion myocardial hemorrhage using proton NMR imaging at 1.5 T. Circulation, 86: 1018–1025.
  • 44. Basso C., Corbetti F., Silva C. et al. (2007) Morphologic validation of reperfused hemorrhagic myocardial infarction by cardiovascular magnetic resonance. Am. J. Cardiol., 100: 1322–1327.
  • 45. Husser O., Monmeneu J.V., Sanchis J. et al. (2013) Cardiovascular magnetic resonance-derived intramyocardial hemorrhage after STEMI: Influence on long-term prognosis, adverse left ventricular remodeling and relationship with microvascular obstruction. Int. J. Cardiol., 167: 2047–2054.
  • 46. Eitel I., Kubusch K., Strohm O. et al. (2011) Prognostic value and determinants of a hypointense infarct core in T2-weighted cardiac magnetic resonance in acute reperfused ST-elevation-myocardial infarction. Circ. Cardiovasc. Imaging, 4: 354–362.
  • 47. Kali A., Tang R.L., Kumar A. et al. (2013) Detection of acute reperfusion myocardial hemorrhage with cardiac MR imaging: T2 versus T2. Radiology, 269: 387–395.
  • 48. Carrick D., Haig C., Ahmed N. et al. (2016) Myocardial Hemorrhage After Acute Reperfused ST-Segment-Elevation Myocardial Infarction: Relation to Microvascular Obstruction and Prognostic Significance. Circ. Cardiovasc. Imaging, 9: e004148.
  • 49. Husser O., Monmeneu J.V., Sanchis J. et al. (2013) Cardiovascular magnetic resonance-derived intramyocardial hemorrhage after STEMI: Influence on long-term prognosis, adverse left ventricular remodeling and relationship with microvascular obstruction. Int. J. Cardiol., 167: 2047–2054.
  • 50. Beek A.M., Nijveldt R., van Rossum A.C. (2010) Intramyocardial hemorrhage and microvascular obstruction after primary percutaneous coronary intervention. Int. J. Cardiovasc. Imaging, 26: 49–55.
  • 51. Amabile N., Jacquier A., Shuhab A. et al. (2012) Incidence, predictors, and prognostic value of intramyocardial hemorrhage lesions in ST elevation myocardial infarction. Catheter Cardiovasc. Interv., 79: 1101–1108.