References:
- 1. Korostiy V.I., Polishchuk V.T., Zavorotny V.I. (2015) Psychopharmacotherapy in the complex treatment and rehabilitation of post-traumatic stress disorder. Int. Neurol. J., 6(76): 59–71. (In Ukr.).
- 2. Brigode W., Cohan C., Beattie G., Victorino G. (2019) Alcohol in Traumatic Brain Injury: Toxic or Therapeutic? J. Surg. Res., 244: 196–204.
- 3. Jenner P. (1994) Oxidative damage in neurodegenarative disease. Lancet, 344(8925): 796–798. doi: 10.1016/s0140-6736(94)92347-7
- 4. Khatri N., Thakur M., Pareek V. et al. (2018) Oxidative stress: major threat in traumatic brain injury. CNS Neurol. Disord. Drug Targets, 17(9): 689–695.
- 5. Lekomtseva Ye.V. (2019) The increased kinetics of H2O2-induced chemiluminescence in the patients with long-term consequences after cerebral contusion. Modern medical technologies, 4: 21–26.
- 6. Bogolepova A.N., Chukanova E.I. (2010) The problem of neuroplasticity. Int. Neurol. J., 8(38): 69–72. (In Rus.).
- 7. Yakhno N.N., Shtulman D.R. (Eds.) (2001) Diseases of the nervous system. Medicine, Moscow, 480 p. (In Rus.).
- 8. Kozlov A.V., Bahrami S., Redl H., Szabo C. (2017) Alterations in nitric oxide homeostasis during traumatic brain injury. Biochim. Biophys. Acta Mol. Basis Dis., 1863: 2627–2632.
- 9. Lekomtseva Ye.V. (2019) Some metabolic processes in the patients with long-term consequences of mild traumatic brain injury. Int. J. Med. Medical Res., 5(2): 25–31.
- 10. Polishchuk M.E., Goncharuk O.M. (2015) Closed traumatic brain injury. A modern view of the problem. Int. Neurol. J., 6(76): 72–80. (In Ukr.).
- 11. Vein A.M. (Ed.) (2000) Autonomic disorders: clinical presentation, diagnosis, treatment. Medical news agency, Moscow, 752 p.
- 12. Lekomtseva Ye.V. (2019) The content of tau protein in the serum of patients with long-term consequences of mild traumatic brain injury. Ukr. Neurol. J., 1(50): 17–20. (In Ukr.).
- 13. Moroz V.V., Carmen N.B., Mayevsky E.I. (2011) Mechanisms of secondary neuronal damage in traumatic brain injury. General Reanimatol., 7: 42–45. (In Rus.).
- 14. Samuels М. (Ed.) (1997) Neurology (transl. from English). Practice, Moscow, 638 p. (In Rus.).
- 15. Awasthi D., Church D.F., Torbati D. et al. (1997) Oxidative stress following traumatic brain injury in rats. Surg. Neurol., 47(6): 575–581.
- 16. Bazan N.G. (1999) Second messengers derived from excitable membranes are involves in ischemic and seizure-related brain damage. Path. Physiol. Exper. Ther., 4: 11–16.
- 17. Li X., Wang H., Wen G. et al. (2018) Neuroprotection by quercetin via mitochondrial function adaptation in traumatic brain injury: PGC-1α pathway as a potential mechanism. J. Cell Mol. Med., 22(2): 883–891.
- 18. Mayer E.A. (2003) Dissecting the components of central response to stress. Nature Neurosci., 6: 1011–1107.
- 19. Zhao Y.J., Lei S., Lin X. et al. (2011) 4-hydroxybenzyl alcohol ameliorates cerebral injury in rats by antioxidant action. Neurochem. Res., 36(2): 339–346.
- 20. Martin L.J., Wong M., Hanaford A. (2019) Neonatal brain injury and genetic causes of adult-onset neurodegenerative disease in mice interact with effects on acute and late outcomes. Front. Neurol., 10: 635.
- 21. Sohal R.S. (2002) Role of oxidative stress and protein oxidation in the aging process. Free Radic. Biol. Med., 33(1): 37–44.
- 22. Xia D., Zhai X., Wang H. et al. (2019) Alpha lipoic acid inhibits oxidative stress-induced apoptosis by modulating of Nrf2 signalling pathway after traumatic brain injury. J. Cell Mol. Med., 23(6): 4088–4096.
- 23. Dorsett C.R., McGuire J.L., DePasquale E.A et al. (2017) Glutamate neurotransmission in rodent models of traumatic brain injury. J. Neurotrauma, 15(34): 263–272.
- 24. Halliwell B., Gutteridge J.M. (1984) Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet, 1(8391): 1396–1397. doi: 10.1016/s0140-6736(84)91886-5
- 25. Linden D.E. (2005) Where in the brain is it produced and what does it tell us? Neuroscientist, 11: 563–576.
- 26. McGinn M.J., Povlishock J.T. (2016) Pathophysiology of traumatic brain injury. Neurosurg. Clin. N. Am., 27(4): 397–407.
- 27. Phillips L.L., Reeves T.M. (2001) Interactive pathology following traumatic brain injury modifies hippocampal plasticity. Restor. Neurol. Neurosci., 19(3–4): 213–235.
- 28. Vespa P.M., McArthur D.L., Xu Y. et al. (2010) Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology, 75(9): 792–798.
- 29. Morris M.C., Bercz A., Niziolek G.M. et al. (2019) UCH-L1 is a poor serum biomarker of murine traumatic brain injury after polytrauma. J. Surg. Res., 244: 63–68.
- 30. Neuberger E.J., Wahab R.A., Jayakumar A. et al. (2014) Distinct effect of impact rise times on immediate and early neuropathology after brain injury in juvenile rats. J. Neurosci. Res., 92(10): 1350–1361.
- 31. Perkin G.D. (2002) Neurology in general practice. The United Kingdom, Dunitz Ltd., 90 p.
- 32. Yao M., Yang L., Wang J. et al. (2015) Neurological recovery and antioxidant effects of curcumin for spinal cord injury in the rat: a network meta-analysis and systematic review J. Neurotrauma, 32(6): 381–391.
- 33. Zhang L., Wang H., Zhou X. et al. (2019) Role of mitochondrial calcium uniporter-mediated Ca2+ and iron accumulation in traumatic brain injury. J. Cell Mol. Med., 23(4): 2995–3009.
- 34. Youn Y.K., LaLond C., Demling R. (1991) Use of antioxidant therapy in shock and trauma. Circ. Shock, 35(4): 245–249.
- 35. Rattan S.I. (2006) Theories of biological aging: genes, proteins and free radicals. Free Radic. Res., 40(12): 1230–1238.
- 36. Zhang H., Adwanikar H., Werb Z., Noble-Haeusslein L.J. (2010) Matrix metalloproteinases and neurotrauma: evolving roles in injury and reparative processes. Neurosci., 16(2): 156–170.
- 37. Wang W.T., Sun L, Sun C.H. (2019) PDIA3-regulted inflammation and oxidative stress contribute to the traumatic brain injury (TBI) in mice. Biochem. Biophys. Res. Commun., 518(4): 657–663.
- 38. Zeng Z., Zhang Y., Jiang W. et al. (2019) Modulation of autophagy in traumatic brain injury. J. Cell Physiol. doi: 10.1002/jcp.29173
- 39. Phillips L.L., Lyeth B.G., Hamm R.J., Povlishock J.T. (1994) Combined fluid percussion brain injury and entorhinal cortical lesion: a model for assessing the interaction between neuroexcitation and deafferentation. J. Neurotrauma, 11(6): 641–656.
- 40. Lekomtseva Ye.V. (2019) Clinical and neurological features and the content of neuroamino acids in patients with long-term consequences of mild closed traumatic brain injury. Int. Neurol. J., 3(105): 33–38. (In Ukr.).
- 41. Papa L., Ramia M.M., Edwards D. et al. (2015) Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion. J. Neurotrauma, 32(10): 661–673.