Correlations of bioelectrical brain activity spectral analysis parameters with clinical and neurovisualization data in acute period of spontaneous supratentorial intracerebral hemorrhage

September 2, 2020
Specialities :

Aim of the study: to investigate correlations of bioelectrical brain activity spectral analysis parameters with clinical and neurovisualization data in acute period of spontaneous supratentorial intracerebral hemorrhage (SSICH). Objects and methods. The prospective cohort study of 156 patients (middle age 66.7±0.8 years) in acute period of SSICH was made against the conservative therapy. Neurological examination contained evaluation by Full Outline of UnResponsiveness (FOUR), National Institute of Health Stroke Scale (NIHSS). Acute period of SSICH outcome was evaluated on 21st day after disease onset according to modified Rankin Scale (mRS). The intracerebral hemorrhage volume (ICHV) and midline shift were detected by using computed tomography. Bioelectrical brain activity was done during first 48 hours from the onset of the disease. Spearman correlation coefficient was calculated to estimate the connection between electroencephalographic parameters and clinical, neurovisualization data. Results. It was detected, that relative spectral rhythm power (RSRP) of delta band of both hemispheres has middle strength correlations with ICHV (R=0.69 for affected hemisphere (AH), p<0.05, R=0.67 for intact hemisphere (IH), p<0.05), MS (R=0.62–0,65 for both hemispheres, p<0.05), strong correlations with FOUR score (R=–0.70 for AH, p<0.05, R=–0.72 for IH, p<0.05), NIHSS score (R=0.76 for AH, p<0.05, R=0.74 for IH, p<0.05) at the time of EEG and with mRS score on 21st day of the disease (R=0.84 for both hemispheres, p<0.05). Nevertheless, RSRP of alpha band correlations strength was similar to RSRP of delta band. Fronto-occipital rhythm gradient (FORG) of alpha band of IH correlates with ICHV (R=0.38, p<0.05), MS (R=0.39, p<0.05), FOUR (R=–0.35, p<0.05), NIHSS (R=0.46, p<0.05) and mRS (R=0.44, p<0.05). Thus, total interhemispheric rhythm asymmetry has weak correlation with ICHV (R=–0.18, p<0.05). Conclusions. Elevation of RSRP of delta band on the ground of reduction of RSRP and FORG of alpha band in both hemispheres, decreasing of total spectral rhythm power of AH in comparison with IH during first 48 hours from the onset of SSICH were associated with larger ICHV, more severe MS, neurologic deficit and worse outcome.


  • An S.J., Kim T.J., Yoon B.W. (2017) Epidemiology, Risk Factors, and Clinical Features of Intracerebral Hemorrhage: An Update. J. Stroke, 19(1): 3–10. DOI: 10.5853/jos.2016.00864.
  • Assenza G., Zappasodi F., Pasqualetti P. et al. (2013) A contralesional EEG power increase mediated by interhemispheric disconnection provides negative prognosis in acute stroke. Restor. Neurol. Neurosci., 31(2): 177–188. DOI: 10.3233/RNN-120244.
  • Bentes C., Peralta A.R., Viana P. et al. (2018) Quantitative EEG and functional outcome following acute ischemic stroke. Clin. Neurophysiol., 129(8): 1680–1687. DOI: 10.1016/j.clinph.2018.05.021.
  • Chen Y., Xu W., Wang L. et al. (2018) Transcranial Doppler combined with quantitative EEG brain function monitoring and outcome prediction in patients with severe acute intracerebral hemorrhage. Clin. Neurophysiol., 129(8): 1680–1687. DOI: 10.1186/s13054-018-1951-y.
  • Finnigan S., Wong A., Read S. (2016) Defining abnormal slow EEG activity in acute ischaemic stroke: Delta/alpha ratio as an optimal QEEG index. Clin. Neurophysiol., 127(2): 1452–1459. DOI: 10.1016/j.clinph.2015.07.014.
  • Jiang M., Su Y., Liu G. et al. (2019) Predicting the non-survival outcome of large hemispheric infarction patients via quantitative electroencephalography: Superiority to visual electroencephalography and the Glasgow Coma Scale. Neurosci. Lett., 706: 88–92. DOI: 10.1016/j.neulet.2019.05.007.
  • Katan M., Luft A. (2018) Global Burden of Stroke. Semin. Neurol., 38(2): 208–211. DOI: 10.1055/s-0038-1649503.
  • Kim J.Y., Bae H.J. (2017) Spontaneous Intracerebral Hemorrhage: Management. J. Stroke, 19(1): 28–39. DOI: 10.5853/jos.2016.01935.
  • Kuznietsov A.A. (2018) Prediction of the functional outcome of cerebral ischemic supratentorial stroke acute period on the basis of spectral analysis of the brain bioelectrical activity. Zapor. Med. J., 20(3): 324–329. DOI: 10.14739/2310-1210.2018.3.132127.
  • Nagy I., Fabó D. (2018) Klinikai neurofiziológiai módszerek a cerebrovascularis betegségek diagnózisában és kezelésében [Clinical neurophysiological methods in diagnosis and treatment of cerebrovascular diseases]. Ideggyogy Sz., 71(1–2): 7–14. DOI: 10.18071/isz.71.0007.
  • Popa L.L., Dragos H., Pantelemon C. et al. (2020) The Role of Quantitative EEG in the Diagnosis of Neuropsychiatric Disorders. J. Med. Life, 13(1): 8–15. DOI: 10.25122/jml-2019-0085.
  • Purandare M., Ehlert A.N., Vaitkevicius H. et al. (2018) The role of cEEG as a predictor of patient outcome and survival in patients with intraparenchymal hemorrhages. Seizure, 61: 122–127. DOI: 10.1016/j.seizure.2018.08.014.
  • Sembill J.A., Kuramatsu J.B. (2019) Akutbehandlung der intrazerebralen Blutung [Acute treatment of intracerebral hemorrhage]. Med. Klin. Intensivmed.Notfmed, 114(7): 613–619. DOI: 10.1007/s00063-019-00607-9.
  • Sprügel M.I., Huttner H.B. (2019) Intrazerebrale Blutung: «hot topics» [Intracerebral hemorrhage: hot topics]. Nervenarzt, 90(10): 987–994. DOI: 10.1007/s00115-019-0777-4.
  • Stojanović B., Djurasić L. (2013) Predictive importance of index of asymmetry in recovery following stroke. Acta. Chir. Iugosl., 60(1): 101–104. Doi 10.2298/aci1301101s.