Natural polyphenols as inhibitors of coronavirus-cell interaction: review of literature and experimental data

May 25, 2020
1000
Resume

At the time of the pandemic outbreak caused by SARS-CoV-2, no specific inhibitors of the human coronavirus reproduction have not been designed, although such studies were in full swing. Several flavonoids and their derivatives were shown to inhibit effectively reproduction of human and animal coronaviruses in vitro. The specific targets of flavonoids at different stages of coronavirus-cell interaction have been elucidated. These targets are disclosed in this review. Of particular importance are the inhibition of virus penetration into the cell as well as the inhibition of virus-specific protease — one of the important virus-specific enzymes. The prospects for using flavonoids and their derivatives as probable antiviral substances of clinical utility are considered. The multitarget patterns of flavonoid action is the key feature of these substances. The data of the original pilot project on the effects of flavonoid-containing composition Proteflazidum on the reproduction of the porcine transmissive gastroenteritis virus in vitro has been provided. Furthermore, the data on the molecular interaction of the active structures of Proteflazidum with 3C-like protease of SARS-CoV-2 obtained by computer simulation have been presented.

References:

  • Palchykovska L.H., Vasylchenko O.V., Platonov M.O. ta in. (2013) Antyvirusni vlastyvosti roslynnykh flavonoidiv — inhibitoriv syntezu DNK i RNK. Biopolym. Cell, 29(2): 150–156 (http://dx.doi.org/10.7124/bc.000813).
  • Bhowmik D., Nandi R., Kumar D. (2020) Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis (https://chemrxiv.org/articles/Evaluation_of_Flavonoids_as_2019-nCoV_Cell_Entry_Inhibitor_Through_Molecular_Docking_and_Pharmacological_Analysis/12071508/1).
  • Cheng L., Zheng W., Li M. et al. (2020) Citrus Fruits are rich in flavonoids for immunoregulation and potential targeting ACE2 (https://www.preprints.org/manuscript/202002.0313/v1).
  • Choi H.J., Kim J.H., Lee C.H. et al. (2009) Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus. Virol. J., 8: 460. doi: 10.1186/1743-422X-8-460.
  • Clark K.J., Grant P.G., Sarr A.B. et al. (1998) An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections. Vet. Microbiol., 63(2–4): 147–157. doi: 10.1016/s0378-1135(98)00242-9.
  • DeClercq E. (2009) Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int. J. Antimicrob. Agents, 33: 307–320. doi: 10.1016/j.ijantimicag.2008.10.010.
  • Grum-Tokars V., Ratia K., Begaye A. et al. (2008) Evaluating the 3C-like protease activity of SARS Coronavirus: recommendations for standardized assays for drug discovery. Virus Res., 133: 63–73. doi:10.1016/j.virusres.2007.02.015.
  • Guerrero L., Castillo J., Quiñones M. et al. (2012) Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies. PLoS One, 7(11): e49493. doi:10.1371/journal.pone.0049493.
  • Hoffmann M., Kleine-Weber H., Schroeder S. et al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2): 271–280. e8. doi: 10.1016/j.cell.2020.02.052.
  • Jin Z., Du X., Xu Y. et al. (2020) Structure of Mpro from COVID-19 virus and discovery of its inhibitors (https://doi.org/10.1038/s41586-020-2223-y).
  • Jo S., Kim H., Kim S. et al. (2019) Characteristics of flavonoids as potent MERS‐CoV 3C‐like protease inhibitors. Chem. Biol. Drug. Des., 94: 2023–2030. doi: 10.1111/cbdd.13604.
  • Jo S., Kim S., Shin D.H., Kim M.S. (2020) Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 35(1): 145–151. doi: 10.1080/14756366.2019.1690480.
  • Kawase M., Shirato K., van der Hoek L. et al. (2012) Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol., 86(12): 6537–6545. doi: 10.1128/JVI.00094-12.
  • Keum Y.S., Jeong Y.J. (2012) Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target. Biochem. Pharmacol., 84(10): 1351–1358. doi: 10.1016/j.bcp.2012.08.012.
  • Kilianski A., Baker S.C. (2014) Cell-based antiviral screening against coronaviruses: developing virus-specific and broad-spectrum inhibitors. Antiviral Res., 101: 105–112. doi:10.1016/j.antiviral.2013.11.004.
  • Kim Y., Lovell S., Tiew K.-C. et al. (2012) Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses. J. Virol., 86(21): 11754–11762.
  • Kwon D.H., Choi W.J., Lee C.H. et al. (2007) Flavonoid compound having an antiviral activity. Patent WO2007069823A1.
  • Lee C., Lee J.M., Lee N.-R. et al. (2009) Investigation of the pharmacophore space ofsevere acute respiratory syndrome coronavirus (SARS-CoV) NTPase/helicase by dihydroxychromone derivatives. Bioorg. Med. Chem. Lett., 19: 4538–4541. doi:10.1016/j.bmcl.2009.07.009.
  • Li W., Moore M.J., Vasilieva N. et al. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426: 450–454. doi:10.1038/nature02145.
  • Li F. (2016) Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 3(1): 237–261. doi: 10.1146/annurev-virology-110615-042301.
  • Liang W., He L., Ning P. et al. (2015) (+)–Catechin inhibition of transmissible gastroenteritis coronavirus in swine testicular cells is involved its antioxidation. Res. Vet. Sci., 103: 28–33. doi: 10.1016/j.rvsc.2015.09.009.
  • Liu X., Zhang B., Jin Z. et al. (2020) The crystal structure of COVID-19 main protease in complex with an inhibitor N3. DOI: 10.2210/pdb6LU7/pdb.
  • Lu R., Zhao X., Li J. et al. (2020) Genomic characterisation and epidemio­logy of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224): 565–574. doi: https://doi.org/10.1016/S0140-6736(20)30251-8.
  • Millet J.K., Whittaker G.R. (2015) Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res., 202: 120–134. doi: 10.1016/j.virusres.2014.11.021.
  • Nguyen T.T., Woo H.J., Kang H.K. et al. (2012) Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett., 34: 831–838. doi: 10.1007/s10529-011-0845-8.
  • Park H.R., Yoon H., Kim M.K. et al. (2012) Synthesis and antiviral evaluation of 7-O-arylmethylquercetin derivatives against SARS-associated coronavirus (SCV) and hepatitis C virus (HCV). Arch. Pharm. Res., 35(1): 77–85. doi: 10.1007/s12272-012-0108-9.
  • Ramalho S.D., de Sousa L.R., Burger M.C. et al. (2015) Evaluation of flavonols and derivatives as human cathepsin B inhibitor. Nat. Prod. Res., 29(23): 2212–2214. doi: 10.1080/14786419.2014.1002404.
  • Roh C. (2012) A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide. Int. J. Nanomedicine, 7: 2173–2179. doi: 10.2147/IJN.S31379.
  • Ryu Y.B., Jeong H.J., Kim J.H. et al. (2010) Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 18(22): 7940–7947. doi: 10.1016/j.bmc.2010.09.035.
  • Sadati S.M., Gheibi N., Ranjbar S., Hashemzadeh M.S. (2019) Docking study of flavonoid derivatives as potent inhibitors of influenza H1N1 virus neura­minidase. Biomed. Rep., 10(1): 33–38. doi: 10.3892/br.2018.1173.
  • Schwarz S., Sauter D., Wang K. et al. (2014) Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med., 80: 177–182. doi: 10.1055/s-0033-1360277.
  • Song J.H., Shim J.K., Choi H.J. (2011) Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via independent pathway of viral induced reactive oxygen species. Virol. J., 8: 460. doi: 10.1186/1743-422X-8-460.
  • Sosa H.M., Sosa Y.J., Phansalkar S., Stieglitz K.A. (2017) Structural analysis of flavonoid/drug target complexes: natural products as lead compounds for drug development. Nat. Prod. Chem. Res., 5: 2. doi:10.4172/2329-6836.1000254.
  • Trokhymchuk T., Zavelevich M., Liulchuk M. et al. (2017) In vitro study of anti-HIV activity of proteflazid herbal composition. Am. J. Fundam. Appl. Exp. Res., 7: 87–91.
  • Wang K., Chen W., Zhou Y.S. et al. (2020) SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. doi:10.1101/2020.03.14.988345.
  • Williams R.J., Spencer J.P.E., Rice-Evans C. (2004) Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med., 36(7): 838–849. doi: 10.1016/j.freeradbiomed.2004.01.001.
  • Yi L., Li Z., Yuan K. et al. (2004) Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 78: 11334–11339. doi: 10.1128/JVI.78.20.11334-11339.2004.
  • Zakaryan H., Arabyan E., Oo A., Zandi K. (2017) Flavonoids: promising natural compounds against viral infections. Arch. Virol., 162(9): 2539–2551. doi: 10.1007/s00705-017-3417-y.
  • Zhang X., Tang X., Liu H. et al. (2012) Autophagy induced by baicalin involves downregulation of CD147 in SMMC-7721 cells in vitro. Oncol. Rep., 27(4): 1128–1134. doi: 10.3892/or.2011.1599.
  • Ziebuhr J., Snijder E.J., Gorbalenya A.E. (2000) Virus-encoded proteina­ses and proteolytic processing in the Nidovirales. J. Gen. Virol., 81: 853–879. doi: 10.1099/0022-1317-81-4-853.
  • Zumla A., Chan J.F., Azhar E.I. et al. (2016) Coronaviruses — drug discovery and therapeutic options. Nat. Rev. Drug. Discov., 15: 327–347. doi: 10.1038/nrd.2015.37.