Human energy system as a part of natural energy exchange: value for fundamental science and medicine (part II)

November 6, 2019
744
Resume

The article continues the cycle of publications of the authors about the organization of the human energy system. The authors made an interdisciplinary review in order to show the relationship and commonality of the flow of fundamental energy processes in nature and the human body for the first time. This is essential for understanding the essence of the course of metabolism in the human body from the perspective of systemic medicine. It is also important for understanding the essence of phenomena from the standpoint of the new magnetoelectrochemical concept that the authors propose. The part II is devoted to the electromagnetic manifestations of the human body. The mechanisms of its interaction with natural (geocosmic) electromagnetic fields are described.

Published: 18.10.2019

References:

  • Agadzhanyan N.A., Makarova I.I. (2005) Magnitnoe pole Zemli i organizm cheloveka. Ekologiya cheloveka, 9: 3–9.
  • Aleksandrov V.V. (2006) Ekologicheskaya rol elektromagnetizma. Sankt-Peterburgskiy gos. politeh. un-t, Sankt-Peterburg, 716.
  • Blank M.A., Ryabyih T.P. (2000) Hronobiologiya i hronomeditsina. F.I. Komarov, S.I. Rapoport (red.). Triada H, Sankt-Peterburg, s. 329–355.
  • Vladimirskiy B.M., Temuryants N.A. (2000) Vliyanie solnechnoy aktivnosti na biosferu — noosferu. Geliobiologiya ot A.L. Chizhevskogo do nashih dney. Izd-vo Mezhdunarod. nezavis. ekologo-politologich. un-ta, Moskva, 374.
  • Gall L.N. (2009) V mire sverhslabyih. Nelineynaya kvantovaya bioenergetika: novyiy vzglyad na prirodu zhizni. Moskva, 317 s.
  • Gall L.N. (2010) Bioenergetika — magiya zhizni. Astrel, Sankt-Peterburg, 349 s.
  • Panchelyuga V.A., Shnol S.E. (2009) Neodnorodnost prostranstva kak faktor, opredelyayuschiy rezultatyi izmereniy. Sankt-Peterburg, 400.
  • Potyazhenko M.M., Nevoyt A.V. (2019) Energeticheskaya sistema cheloveka v svete sovremennyih fiziko-biologicheskih znaniy, kontseptsiy, gipotez. med. chasopis, 4(2) (132): 24–29.
  • Samoylov V.O. (2013) Meditsinskaya biofizika. SpetsLit, Sankt-Peterburg, 591.
  • Sokolovskiy V.V. (2008) Tioldisulfidnaya sistema v reaktsii organizma na faktoryi okruzhayuschey sredyi. Nauka, Sankt-Peterburg, 121.
  • Hristich T.N., Gorbachevskiy A.V. (2009) Elektromagnitnyie polya, bioritmyi i adaptatsiya v organizme cheloveka. BIologIya I farmatsIya, 3: 67–71.
  • Binhi V.N., Prato F.S. (2017) A physical mechanism of magnetoreception: extension and analysis. Bioelectromagnetics, 38: 41–52.
  • Gieré R. (2016) Magnetite in the human body: biogenic vs. anthropogenic. PNAS, 113(43): 11986–11987.
  • Hisamitsu T., Seto A., Nakazato S. et al. (1996) Emission of extremely strong magnetic fields from the head and whole body during oriental breathing exercises. Acupunct. Electrother. Res., 21(3–4): 219–227.
  • Hotary K.B., Robinson K.R. (1994) Endogenous electrical currents and voltage gradients in Xenopus embryos and the consequences of their disruption. Dev. Biol., 166(2): 789–800.
  • Jazirehpour M., Seyyed Ebrahimi S.A. (2016) Synthesis of magnetite nanostructures with complex morphologies and effect of these morphologies on magnetic and electromagnetic properties. Ceramics Int., 42: 16512–16520.
  • Kirschvink J.L., Kobayashi- Kirschvink A., Diaz-Ricci J.C., Kirschvink S.J. (1992a) Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics, 1: 101–113.
  • Kirschvink J.L., Kobayashi-Kirschvink A., Woodford B.J. (1992b) Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA, 89(16): 7683–7687.
  • Kirschvink J.L., Winklhofer M., Walker M.M. (2010) Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J. R. Soc. Interface., 7(2): S179–S191.
  • Kobayashi A.K., Kirschvink J.L., Nesson M.H. (1995) Ferromagnetism and EMFs. Nature, 374(6518): 123.
  • Kobayashi M., Takeda M., Ito K. et al. (1999a) Two-dimensional photon counting imaging and spatiotemporal characterization of ultraweak photon emission from a rat’s brain in vivo. J. Neurosci. Methods, 93(2): 163–168.
  • Kobayashi M., Takeda M., Sato T. et al. (1999b) In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cerebral energy metabolism and oxidative stress. Neurosci. Res., 34(2): 103–113.
  • Maher B.A., Ahmed I.A.M., Karloukovski V. et al. (2016) Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA, 113(39): 10797–10801.
  • Miclaus S., Iftode C., Miclaus A. (2018) Would the human brain be able to erect specific effects due to the magnetic field component of an UHF field via magnetite nanoparticles? PIERM, 69: 23–36.
  • Mintser O.P., Potiazhenko M.M., Nevoit G.V. (2019) Evaluation of the human bioelectromagnetic field in medicine: the development of methodology and prospects are at the present scientific stage. Wiadomości Lekarskie, 5(2): 1117–1121.
  • Strbak O., Kopcansky P., Frollo I. (2011) Biogenic magnetite in humans and new magnetic resonance hazard questions. Meas. Sci. Rev., 11(3): 85–91.
  • Triglia A., Musumeci F., Scordino A. (1997) The spontaneous ultraweak luminescence of living systems. Riv. Biol., 90(2): 267–280.
  • Ueno S. (2012) Studies on magnetism and bioelectromagnetics for 45 years: from magnetic analog memory to human brain stimulation and imaging. Bioelectromagnetics, 33: 3–22.